
Exact In-Memory Multiplication Based on
Deterministic Stochastic Computing

Mohsen Riahi Alam∗, M. Hassan Najafi∗, and Nima TaheriNejad†
∗ University of Louisiana at Lafayette, Louisiana, USA
† Technische Universität Wien, Vienna, Austria

{mohsen.riahi-alam, najafi}@louisiana.edu, nima.taherinejad@tuwien.ac.at

Abstract—Memristors offer the ability to both store and
process data in memory, eliminating the overhead of data transfer
between memory and processing unit. For data-intensive applica-
tions, developing efficient in-memory computing methods is under
investigation. Stochastic computing (SC), a paradigm offering
simple execution of complex operations, has been used for reliable
and efficient multiplication of data in-memory. Current SC-based
in-memory methods are incapable of producing accurate results.
This work, to the best of our knowledge, develops the first
accurate SC-based in-memory multiplier. For logical operations,
we use Memristor-Aided Logic (MAGIC), and to generate bit-
streams, we propose a novel method, which takes advantage
of the intrinsic properties of memristors. The proposed design
improves the speed and reduces the memory usage and energy
consumption compared to the State-of-the-Art (SoA) accurate
in-memory fixed-point and off-memory SC multipliers.

I. INTRODUCTION
Transferring data between memory and processing unit

in conventional computing systems is expensive in terms
of energy and latency. It also constitutes the performance
bottleneck, also known as Von-Neumann’s bottleneck [1].
Memristors offer a promising solution by tackling this chal-
lenge via In-Memory Computation (IMC), i.e., the ability to
both store and process data within memory cells [1]. One
promising in-memory logic for IMC is Memristor-Aided Logic
(MAGIC) [2]. In MAGIC, NOR and NOT logical operations can
be natively executed within memory and with a high degree
of parallelism [3]. Thus, applications that execute the same
instruction on multiple data in parallel can benefit greatly from
MAGIC.

Multiplication is a common but complex operation in many
data intensive applications [4]. In-memory methods for fixed-
point binary multiplication using MAGIC have been previously
investigated [3], [5]. These methods are faster and more en-
ergy efficient than conventional off-memory binary multipliers.
However, memristive technology is a not a fully mature tech-
nology yet, in particular compared to Complementary Metal-
Oxide Semiconductor (CMOS) technology [6]. It suffers from
considerable process variations and nonidealities which affects
its performance [6], [7]. These nonidealities can lead to intro-
duction of faults and noise into the memristive memory and
in-memory calculations. The inherent vulnerability of binary
methods to noise (i.e., to bit flips) which poses a challenge to
the reliability of the system should not be forgotten either.

Stochastic Computing (SC) [8] is a re-emerging computing
paradigm that offers simple execution of complex arithmetic
functions. The paradigm is more robust against fault and noise
compared to the conventional binary computing [9], [10].
Multiplication, as a complex operation in conventional binary
designs, can be implemented using simple standard AND
gates in SC [8], [11]. Input data is converted from binary
to independent (uncorrelated) bit-streams and connected to
the inputs of the AND gate. Logical 1s are produced at the
output of the gate with a probability equal to the product of
the two input data. Prior works have exploited the intrinsic

non-deterministic properties of memristors to generate random
stochastic bit-streams in memory [10], [12], [13]. The bit-
stream generation and the computation performed, however,
are both probabilistic and approximate. Often very long bit-
streams must be processed to produce acceptable results. These
make the prior SC-based in-memory multipliers inefficient
compared to their fixed-point binary counterparts. In this work,
to the best of our knowledge, we develop the first exact SC-
based in-memory multiplier. To this end, we exploit the recent
progress in deterministic and accurate SC computation with
bit-streams [14]–[17]. The proposed multiplication method
benefits from the complementary advantages of both SC and
memristive IMC in producing exact results. In summary, the
main contributions of this work are as follows:
• Performing deterministic and accurate bit-stream-based mul-

tiplication in-memory. To this end, we propose using mem-
ristive crossbar memory arrays and MAGIC logic.

• Proposing an efficient in-memory method for generating
deterministic bit-streams from binary data, which takes
advantage of inherent properties of memristive memories.

• Improving the speed and reducing the memory usage as
compared to the State-of-the-Art (SoA) limited-precision in-
memory binary multipliers.

• Reducing energy consumption compared to the SoA accu-
rate off-memory SC-based multiplication techniques.

II. BACKGROUND

A. Deterministic Computation with Stochastic Bit-Streams
In SC, data is represented by streams of 0s and 1s. In-

dependent of the length, the ratio of the number of 1s to
the length of the bit-stream determines the data value. For
example, 0100 and 11000000 both represent 0.25 in stochastic
domain. Compared to conventional binary radix, this form of
representation is more noise-tolerant as all bits have equal
weight [11], [18]. A single bit-flip, regardless of its position
in the bit-stream, introduces a least significant bit error.

Deterministic approaches have been proposed recently to
perform accurate computation using stochastic bit-streams.
Clock dividing bit-streams [14], using bit-streams with rel-
atively prime lengths [16], and rotation of bit-streams [14]
are examples of these methods. Compared to conventional
SC, with these deterministic methods, the bit-stream length is
reduced by a factor of approximately (1/2N ) where N is the
equivalent number of bits precision [14]. Due to simplicity of
understanding the clock division method, we select this method
to present the idea of this work. The proposed design, however,
is applicable to all the aforementioned deterministic methods.

Fig. 1 shows an example of multiplying two input values,
1/4 and 3/4, using the clock division method. These input
values can be precisely represented using two 4-bit streams
(1000 and 1110, respectively). As can be seen, the first bit-
stream (1000) is repeated four times while the second bit-
stream (1110) is clock divided by four (each bit is repeated



𝐴 = Τ1 4

AND

1000 1000 1000 1000

1111 1111 1111 0000 

1000 1000 1000 0000

𝐵 = Τ3 4

𝐶 = Τ3 16

Fig. 1. Example of multiplication using clock division method.

four times). The output bit-stream, produced by ANDing the
input bit-streams, is a 16-bit stream representing 3/16, the
exact result expected for multiplication of the two inputs.

In general, for multiplication of any two input data using
the clock division method, the first bit-stream is repeated for
the length of the second bit-stream and the second bit-stream
is clock divided by the length of the first one. The length
of the output bit-stream will be the product of the length
of the input bit-streams. Hence, when multiplying two N -bit
precision data, each represented using a 2N -bit stream, the
output bit-stream has a total length of 22N bits.

B. Stochastic Computing and Memristors
Knag et al. [10] exploit the intrinsic non-deterministic prop-

erties of memristors to generate random stochastic bit-streams
in memory. They develop a hybrid system consisted of mem-
ristors integrated with CMOS-based stochastic circuits. Input
data in analog format are converted to random bit-streams
by a stochastic group writing into the memristive memory.
The computation is performed on the bit-streams off-memory
using CMOS logic and the output bit-stream is written back
to the memristive memory. The design in [10] eliminates the
large overhead of off-memory stochastic bit-stream generation.
Their bit-stream generation process, however, can be affected
by variation and noise, and the computation is approximate. A
flow-based in-memory SC architecture is proposed in [13]. The
design exploits the flow of current through probabilistically-
switching memristive nanoswitches in high-density crossbars
to perform stochastic computations. The data is represented
using bit-vector stochastic streams of varying bit-widths in-
stead of traditional stochastic streams composed of individual
bits. The crossbar computation performed in [13] is again
approximate and probabilistic. The design cannot produce
accurate results and must process very long bit-streams.

In this work, we propose a crossbar-compatible SC-based
design to perform efficient deterministic and accurate multi-
plication in memory. We propose a new method to convert
input binary data into deterministic bit-streams and employ
SC to multiply the data by ANDing the generated bit-streams.
Both the bit-stream generation and the logical operation on the
bit-streams will be performed in memory.

C. Memristive In-Memory Computation
Memristors are two-terminal electronic devices with a vari-

able resistance. This resistance depends on the amount and di-
rection of the charge passed through the device in the past [19].
For IMC, we treat this resistance as the logical state, where the
high and low resistance are considered, respectively, as logical
zero and one. Material Implication (IMPLY) [20], [21] and
Memristor Aided LoGIC (MAGIC) [2] are two well-known
logic families proposed for IMC [22], [23]. MAGIC has certain
advantages in that it is fully compatible with the usual crossbar
design, requires a lower number of voltages, and supports NOR,
which can be used to implement any Boolean logic. Fig. 2
shows how NOR logic operation can be executed within the
memory in MAGIC by applying specific voltages [2] to the
input(s) and output memristors. As shown in the figure and
the embedded truth tables, performing logical NOR on negated
version of two inputs (i.e., Ā+ B̄) is equivalent to performing
logical AND on the original inputs (i.e., A ·B). We will exploit
this logical property to implement AND operation in memory.

BA A+B

A B A+B A B A B

0
0
1
1

0
1
0
1

1
0
0
0

1
1
0
0

1
0
1
0

0
0
0
1

B15

B1

B0

A15

A1

A0

A15 B15

A1 B1

A0 B0

V0V0

(a)

(b) (c)

Fig. 2. (a) Performing a MAGIC NOR operation within a memristive memory.
(b) NOR truth table (c) performing AND operation using MAGIC NOR.

An algorithm to execute an N -bit addition in memory using
MAGIC was proposed in [24]. An N -bit addition with this
method takes 12N+1 cycles. Imani et al. [5] proposed a fixed-
point MAGIC-based multiplication algorithm by serializing
addition of partial products in memory. An N -bit fixed-point
multiplication with their method takes 15N2−11N−1 cycles
and 15N2 − 9N − 1 memristors.

An improved method to perform fixed-point multiplication
within memristive memory using MAGIC gates is proposed
in [3]. To multiply two numbers they use the partial product
multiplication algorithm and reuse the memristor cells during
execution. A full-precision multiplication (the output has twice
the precision/length of the inputs) with this method takes
13N2 − 14N + 6 cycles and 20N − 5 memristors. They
also propose a limited-precision multiplication (the output has
the same precision/length as the inputs) by generating and
accumulating only the necessary partial products to produce
the lower half (less significant bits) of the full-precision
product. This improves the latency by approximately 2×. The
latency is reduced to 6.5N2−7.5N−2 cycles while 19N−19
memristors are required. The limited-precision multiplication
is especially useful for digital signal processing and fixed-point
design of neural networks.

III. PROPOSED METHOD

In this section, we discuss our proposed method of exact SC-
based multiplication in memristive memory. We assume that
the input data is already in memory in binary-radix format.

A. Binary to Bit-Stream
To convert the data to deterministic and accurate bit-streams,

we propose the topology shown in Fig. 3. In this topology, we
first initialize 2N memristors in a column (e.g., column E in
Figs. 3a-b), to Low Resistance State (LRS) or logical value
of ‘1’. For conversion, we apply V0 to the positive terminal
of the input binary memristors, Ai, which is connected to
2i memristors in the bit-stream column, in this example,
column E. If Ai is storing a logical ‘0’, i.e., it is in High
Resistance State (HRS), it is virtually open circuit and thus the
2i connected memristors see no voltage and will not change
their state. If Ai stores ‘1’, it is in LRS and acts as a virtual
short circuit, thus all memristors connected to it see a V0 across
themselves. By selecting V0 large enough, all 2i memristors
experience a state change from LRS to HRS. In other words,
from logical ‘1’ (their initial value) to logical ‘0’. Therefore, at
the end of conversion operation, for each ‘1’ (‘0’) in the binary
input Ai, we will have 2i logical ‘0’s (‘1’s) in the generated
bit-stream. We note that this representation is complementary
to (i.e., it is the inverted version of) conventional bit-stream
representation. However, this inversion–as we show later in the
paper– is to our advantage as it reduces the number of steps
necessary to perform multiplication.



V0
A2

A1

A0

V0

A1

A0

External

A0

A1

A1

A2

A2

A2

A2

A1

A1

A0

 1

 1

Switches

External
Switches

External
Switches

E

E

(a)

V0
A2

A1

A0

V0

A1

A0

External

A0

A1

A1

A2

A2

A2

A2

A1

A1

A0

 1

 1

Switches

External
Switches

External
Switches

E

E

(b)

A0

A1

B0

B1

B1

B1

B1

B1

B1

B1

B1

B1

B0

B0

B0

B0

A1

A1

A1

A1

A0

A1

A1

A0

A1

A1

A0

S15

S14

S13

S12

S11

S10

S9

S8

S7

S6

S5

S4

S3

S2

S1

S0

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

0

1

1

1

1

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

0

1

0

0

0

1

0

0

0

1

0

1

1

1

A0

A B C D S

(c)
Fig. 3. (a) 2-bit precision (b) 3-bit precision binary to bit-stream conversion
in memory. (c) Example of 2-input bit-stream-based multiplication using the
proposed method. Inputs are A = 1/4 and B = 3/4 in binary format, and
the output is bit-stream S representing 3/16. The dashed boxes show the bit
repetition pattern based on the clock division method.

For multiplication, presented in Section III-B, we need the
generated bit-stream to be stored in a column (as opposed
to a row). To this end, we use external CMOS switches to
connect input memristors to respective memristors in different
rows. Figs. 3a-b depict examples of how a 2-bit and a 3-bit
precision binary data is converted to bit-stream representation
in memory. As shown in these examples, with the discussed
method an N -bit binary data is converted to a (2N − 1)-
bit stream stored in 2N − 1 memristors. For an exact bit-
stream-based multiplication of data, however, we need a 2N -
bit bit-stream representation for any N -bit binary data. An
additional one bit, 2N -th bit, is always 0 as the maximum
value presentable by an N -bit binary data is 2N − 1. An
additional memristor is therefore initialized to logical ‘1’
(inverted version of ‘0’) and used as the required 2N -th bit.

Another reason for using external switches in the conversion
is the fact that for SC multiplication, the input bit-streams
need to be uncorrelated [11], [14]. That is, the distribution
of ‘1’s and ‘0’s for each operand must be independent of the
other operand. Using external switches allows us to connect
the binary input memristors (e.g., Ai, Bi) to their correspond-
ing bit-stream memristors in an uncorrelated fashion. This
configuration (uncorrelated connection of switches) can be
generated using a CMOS control circuitry. The deterministic
method (e.g., clock division) determines the distribution and
control algorithm/configuration. External switches and even
more complex circuitry (such as sense amplifier and buffers)
have been previously used for similar purposes [3], [24]. Since
memristors are CMOS compatible and can be produced as
Back End Of Line (BEOL) [25]–[27], the external switches
used in the bit-stream generation can be placed below the
memristor crossbar to avoid area overhead.

B. Stochastic Multiplication using MAGIC

To perform multiplication, each N -bit binary data must be
converted to a 22N or 2N bit-stream for exact (full) and lim-
ited precision multiplication, respectively. The multiplication
is consisted of a bit-wise AND operation between the two
operands. However, in MAGIC, which we have chosen for this
work, the only operation compatible with crossbar memory is
NOR. Therefore, we need to use an equivalency, namely,

A ∧B = A ∨ B. (1)

As we see in Equation (1), to perform AND in MAGIC,
the input operands need to be inverted, followed by a NOR
operation. Therefore, our proposed method has the advan-
tage that by generating the deterministic bit-streams already
in their inverted form, as explained in Section III-A, we
save two steps (one for inversion of each operand). Hence,
the deterministic bit-stream multiplication here consists of
only one MAGIC NOR operation between the two bit-stream
operands. To perform the multiplication, i.e., MAGIC NOR,
the two operands need to be connected in a row as shown in
Fig. 2(c). That is, for this operation, each corresponding bit of
the two operands need to be in the same row, which is one
of the reasons why bit-streams are generated in columns (as
opposed to rows). Fig. 3(c) shows an example of a 2-bit input
full-precision multiplication using the proposed method. The
bit-stream operands in this example are generated based on
the clock division concept discussed in Section II-A and the
binary-to-bit-stream method discussed in Section III-A.

C. Bit-Stream to Binary

After performing bit-stream-based multiplication using
MAGIC, the output is in memory in bit-stream format. This
bit-stream can be preserved in memory in current format for
future bit-stream-based processing. However, if an output in
binary format is desired, a final bit-stream-to-binary step is
also needed. This can be done by counting the number of 1s
in the bit-stream through adding all the bits of the bit-stream.
We suggest two methods for this step:

1) In-memory conversion: we propose a new algorithm for
counting all the ‘1’s of the bit-stream in memory. Fig. 4(b)
depicts the proposed method for converting an 8-bit bit-stream
to a 3-bit binary data. The proposed algorithm consists of
XOR and AND operations. As shown in Fig. 4(a), the output of
logical ANDing two input bits can be used in performing logical
XOR on the same inputs. This lets us implement every pair of
AND and XOR gates with three NOR and two NOT operations.
We re-use memristors to minimize the number of required
memristors in implementing this in-memory converter. This
algorithm can be easily extended to convert longer bit-streams.
It takes 4× (log2 L)2 cycles to count the number of ‘1’s in a
bit-stream of length L. This means 4×(2N)2 cycles for a full-
precision and 4×N2 cycles for a limited-precision output. The
full-precision and the limited-precision multiplication require
0.5 × 22N + N and 0.5 × 2N + N additional memristors,
respectively, for in-memory conversion using this method.

2) Off-memory conversion: the output bit-stream (e.g., bit-
stream S in Fig. 3(c)) can be read from the memory and its bits
summed using an off-memory combinational CMOS circuit.
We described a sum function for adding L bits using Verilog
HDL and let the synthesis tool find the best hardware design
for summing those bits. The latency and hardware costs for
conversion of output bit-streams with this method are extracted
from synthesis reports and used in Section IV for evaluation.



S0

S1

S2

S3

S4

S5

S6

S7

R0

R1

R2

R3

R4

R5

R6

0

R0

R1

R2

R3

R4

R5

R6

Q0 Q1

P0

P1

P2

P3

P4

P5

P6

P0

P1

P2

P3

P4

P5

P6

0

Q2

First Step Second Step Third Step

XOR AND(a) (b)

A
B

A·B

A⊕B

Fig. 4. (a) XOR and AND operations using NOR gates (b) Proposed algorithm
for 8-bit bit-stream (S7-S0) to 3-bit binary (Q2Q1Q0) conversion. Each square
presents an AND operation and each circle represents an XOR operation.

IV. RESULTS AND COMPARISON

A. Circuit-Level Simulations
For circuit-level evaluation of the proposed design, we

implemented a 16×16 crossbar and necessary control signals
in LTSpice. For memristors, we used the Voltage-controlled
ThrEshold Adaptive Memristor (VTEAM) model [28] ported
to LTspice [29], [30]. The values used for the parameters are
{Ron, Roff , V Ton, V Toff , xon, xoff , kon, koff , αon, αoff}=
{1kΩ, 300kΩ, -40mV, 300mV, 0nm, 3nm, -100m/sec, 0.091m/sec,
4, 4}. At first, we initialized all memristors to LRS using
VSET = 1.9V . In each step of the operations, we apply
V0 = 0.5V to respective memristors involved in the operation
and disable all other memristors. Based on the LRS to HRS
switching time of a memristor, 4ps was considered for each
operation step. We evaluated all cases of 2-bit precision
multiplication and verified the functionality of the design.

B. Comparison with In-Memory Binary Multiplication
Table I compares the latency (number of processing cycles)

and the area (number of memristors) of the proposed bit-
stream-based multiplier with the prior in-memory fixed-point
multiplication methods. As shown, the proposed multiplier
is significantly faster than the prior in-memory methods by
producing the output bit-stream in only three cycles. In terms
of area too, the proposed method is more efficient (requires a
smaller number of memristors) for N < 5 for the limited preci-
sion case. Compared to the limited precision design of [3] that
produces the lower half (least significant bits), our method is
more precise as it produces the higher half of the full-precision
result. For larger Ns other design considerations regarding
the trade-off between memory and area should be taken into
account. If a binary output is desired, the additional latency and
area of the bit-stream-to-binary step must also be considered.
The inherent fault tolerance of the proposed design can still
be a winning proposition for larger Ns as the nonidealities of
memristive technology can lead to introduction of faults and
noise into the memristive memory and in-memory calculations.
The current in-memory fixed-point multiplication methods are
all based on the conventional binary radix representation of
data which makes them inherently more vulnerable to faults
compared to the SC-based methods.

C. Comparison with Off-Memory Stochastic Multiplication
Clock division is the preferred method for exact bit-stream-

based multiplication as it provides minimum area×delay [17].

TABLE I
LATENCY AND AREA OF IN-MEMORY MULTIPLICATION ALGORITHMS

Methods Latency
(Cycles)

Area
(# of memristors)

Full
Precision

Haj-Ali et al. [3] 13N2 − 14N + 6 20N − 5
Imani et al. [5] 15N2 − 11N − 1 15N2 − 9N − 1

This work 3 3× 22N

Limited
Precision

Haj-Ali et al. [3] 6.5N2 − 7.5N − 2 19N − 19
This work 3 3× 2N

For an off-memory bit-stream-based multiplication of data, the
data must be first read from the memory and be converted from
binary to bit-stream representation. We implemented the clock
division circuit discussed in [14] to convert the data and gen-
erate bit-streams. Multiplication is performed by ANDing the
generated bit-streams. The output is converted back to binary
format using a binary counter and is stored in memory. We
implemented this off-memory design using Verilog HDL and
synthesized using the Synopsys Design Compiler v2018.06-
SP2 with the 45nm NCSU-FreePDK library.

Table II compares the energy consumption of the proposed
exact in-memory multiplier with that of the implemented off-
memory bit-stream-based multiplier. For the cases that include
off-memory processing, we assume the data is read/written
from/to a memristive memory. We used the per bit energy
consumption reported in [31] to calculate the total energy of
the read and write operations. As shown in Table II, for all
different Ns, the proposed in-memory design with in-memory
bit-stream-to-binary conversion provides significantly lower
energy consumption than the off-memory exact SC-based
multiplier. For off-memory bit-stream-to-binary conversion,
however, size of the data read from the memory plays a crucial
role. Our work is more energy efficient for small Ns, however,
for larger Ns traditional CMOS off-memory SC consumes
less energy. The reason is the size of the data read from the
memory, which grows exponentially (bit-streams are read) in
the case of in-memory multiplication off-memory conversion,
compared to traditional off-memory SC computation (where
binary data are read), giving the latter an edge.

V. DISCUSSION AND CONCLUSIONS

This work proposes the first in-memory architecture to
execute exact multiplication based on SC. The multiplication
results are as accurate as the results from fixed-point binary
multiplication. The proposed method significantly reduces the
energy consumption compared to the SoA off-memory exact
SC-based multiplier. Compared to prior in-memory fixed-point
multiplication methods, the proposed design provides faster
results. For smaller Ns, the area is lower or comparable too.
For larger Ns, the area is the price for the gained speed.
The proposed limited-precision multiplication is particularly
interesting for applications such as neural networks and certain
signal processing, since it is not only faster but also more
precise and for the usually targeted Ns, area efficient. If
outputs are desired in binary format, a bit-stream-to-binary
conversion overhead should be considered too. We propose
an efficient crossbar compatible method for this conversion.
The inherent noise-tolerance of bit-stream processing makes
the proposed design further advantageous for memristive-based
computation compared to its binary counterparts. We leave the
study of this aspect for future works.

TABLE II
ENERGY CONSUMPTION COMPARISON (pJ ) OF THE PROPOSED METHOD AND OFF-MEMORY EXACT SC-BASED MULTIPLICATION

Design Method Limited Precision Full Precision
N=2 3 4 5 6 7 8 N=2 3 4 5 6 7 8

This work (no bit-stream-to-binary conversion) 0.04 0.07 0.14 0.28 0.56 1.13 2.26 0.14 0.56 2.3 9.0 36 145 578
This work (+ in-memory bit-stream-to-binary) 0.05 0.11 0.23 0.49 1.03 2.20 4.64 0.23 1.03 3.7 21 90 393 1702
This work (+ off-memory bit-stream-to-binary) 9 17 31 58 110 212 416 31 110 416 1628 6462 25561 102184

Off-Memory Exact SC-based Multiplication 38 40 44 53 76 124 234 54 76 133 694 3092 13919 62541



REFERENCES

[1] Mohammed A. Zidan, John Paul Strachan, and Wei D. Lu. The future of
electronics based on memristive systems. Nature electronics, 1:22–29,
2018.

[2] S. Kvatinsky, D. Belousov, S. Liman, G. Satat, N. Wald, E. G. Friedman,
A. Kolodny, and U. C. Weiser. MAGIC—memristor-aided logic. IEEE
Transactions on Circuits and Systems II: Express Briefs, 61(11):895–
899, Nov 2014.

[3] A. Haj-Ali, R. Ben-Hur, N. Wald, and S. Kvatinsky. Efficient algorithms
for in-memory fixed point multiplication using MAGIC. In 2018 IEEE
International Symposium on Circuits and Systems (ISCAS), pages 1–5,
May 2018.

[4] D. Radakovits, N. Taherinejad, M. Cai, T. Delaroche, and S. Mirabbasi.
A memristive multiplier using semi-serial imply-based adder. IEEE
Transactions on Circuits and Systems I: Regular Papers, pages 1–12,
2020.

[5] Mohsen Imani, Saransh Gupta, and Tajana Rosing. Ultra-Efficient
Processing In-Memory for Data Intensive Applications. In Proceedings
of the 54th Annual Design Automation Conference 2017, DAC ’17, New
York, NY, USA, 2017. ACM.

[6] N. TaheriNejad and D. Radakovits. From behavioral design of memris-
tive circuits and systems to physical implementations. IEEE Circuit and
Systems (CAS) Magazine, 19(4):6–18, Fourthquarter 2019.

[7] Nimrod Wald and Shahar Kvatinsky. Understanding the influence
of device, circuit and environmental variations on real processing in
memristive memory using memristor aided logic. Microelectronics
Journal, 2019.

[8] B.R. Gaines. Stochastic computing systems. In Advances in Information
Systems Science, pages 37–172. Springer US, 1969.

[9] Weikang Qian, Xin Li, M.D. Riedel, K. Bazargan, and D.J. Lilja.
An architecture for fault-tolerant computation with stochastic logic.
Computers, IEEE Trans. on, 60(1):93–105, Jan 2011.

[10] P. Knag, W. Lu, and Z. Zhang. A Native Stochastic Computing
Architecture Enabled by Memristors. IEEE Trans. on Nanotechnology,
13(2), March 2014.

[11] Armin Alaghi and John P. Hayes. Survey of stochastic computing. ACM
Trans. Embed. Comput. Syst., 12(2s):92:1–92:19, 2013.

[12] S. Gaba, P. Knag, Z. Zhang, and W. Lu. Memristive devices for
stochastic computing. In 2014 IEEE Intern. Symp. on Circuits and
Systems (ISCAS), June 2014.

[13] S. Raj, D. Chakraborty, and S. K. Jha. In-memory flow-based stochastic
computing on memristor crossbars using bit-vector stochastic streams. In
2017 IEEE 17th Intern. Conf. on Nanotechnology (IEEE-NANO), pages
855–860, July 2017.

[14] Devon Jenson and Marc Riedel. A Deterministic Approach to Stochastic
Computation. In the 35th ICCAD, pages 102:1–102:8, New York, NY,
USA, 2016.

[15] M. Hassan Najafi, David J. Lilja, and Marc Riedel. Deterministic
Methods for Stochastic Computing using Low-Discrepancy Sequences.
In Proceedings of the 37th International Conference on Computer-Aided
Design, ICCAD ’18, 2018.

[16] M. Hassan Najafi, S. Jamali-Zavareh, D. J. Lilja, M. D. Riedel,
K. Bazargan, and R. Harjani. Time-Encoded Values for Highly Efficient
Stochastic Circuits. IEEE Trans. on Very Large Scale Integration (VLSI)
Systems, 25(5):1644–1657, May 2017.

[17] M. Hassan Najafi, D. Jenson, D. J. Lilja, and M. D. Riedel. Performing
Stochastic Computation Deterministically. IEEE Transactions on Very
Large Scale Integration (VLSI) Systems, 27(12):2925–2938, Dec 2019.

[18] M. Hassan Najafi and M. E. Salehi. A Fast Fault-Tolerant Architecture
for Sauvola Local Image Thresholding Algorithm Using Stochastic
Computing. IEEE Transactions on Very Large Scale Integration (VLSI)
Systems, 24(2):808–812, Feb 2016.

[19] Leon Chua. Memristor-the missing circuit element. IEEE Transactions
on circuit theory, 18(5):507–519, 1971.

[20] Eero Lehtonen and Mika Laiho. Stateful implication logic with memris-
tors. In Proceedings of the 2009 IEEE/ACM International Symposium on
Nanoscale Architectures, pages 33–36. IEEE Computer Society, 2009.

[21] Julien Borghetti, Gregory S. Snider, Philip J. Kuekes, J. Joshua Yang,
Duncan R. Stewart, and R. Stanley Williams. Memristive switches enable
stateful logic operations via material implications. Nature, 464:873–876,
2010.

[22] S. G. Rohani and N. TaheriNejad. An improved algorithm for IMPLY
logic based memristive full-adder. In 2017 IEEE 30th Canadian
Conference on Electrical and Computer Engineering (CCECE), pages
1–4, April 2017.

[23] S. Ganjeheizadeh Rohani, N. Taherinejad, and D. Radakovits. A
semiparallel full-adder in imply logic. IEEE Transactions on Very Large
Scale Integration (VLSI) Systems, 28(1):297–301, Jan 2020.

[24] N. Talati, S. Gupta, P. Mane, and S. Kvatinsky. Logic design within
memristive memories using memristor-aided logic (MAGIC). IEEE
Transactions on Nanotechnology, 15(4):635–650, July 2016.

[25] Neuro-bit. Bio inspired technologies llc, 2017.
[26] Knowm. Knowm inc., 2017.
[27] Peter Clarke. TSMC to offer embedded ReRAM in 2019. eeNews, 2017.
[28] S. Kvatinsky, M. Ramadan, E. G. Friedman, and A. Kolodny. Vteam:

A general model for voltage-controlled memristors. IEEE Transactions
on Circuits and Systems II: Express Briefs, 62(8):786–790, Aug 2015.

[29] https://www.ict.tuwien.ac.at/staff/taherinejad/projects/memristor/
files/vteam.sub, March 2018.

[30] N. TaheriNejad, T. Delaroche, D. Radakovits, and S. Mirabbasi. A
semi-serial topology for compact and fast IMPLY-based memristive full
adders. In 2019 IEEE New Circuits and Systems symposium (NewCAS),
pages 1–5, 2019.

[31] J Joshua Yang, Dmitri B Strukov, and Duncan R Stewart. Memristive
devices for computing. Nature nanotechnology, 8(1):13, 2013.


