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ABSTRACT
In-Memory Computing (IMC) is a promising computing paradigm
to accelerate Big Data applications. It reduces the data movement
between memory and processing units, and provides massive paral-
lelism. Memristive technology is one of the promising technologies
for IMC. This emerging technology, however, is still in evolution,
facing practical challenges. Memristive memories are prone to soft-
error while storing the data and during computations. The tradi-
tional binary encoding commonly used in memristive IMC is highly
sensitive to soft-errors, whichmakes developing reliablememristive
IMC more challenging. Stochastic Computing (SC) is a re-emerging
computing paradigm that is highly robust against soft-errors as
any bit flip leads to only a least significant bit error. In this work,
we study SC as a solution to increase the reliability of memristive
IMC. We investigate how and to what extent SC may address or
improve the reliability issues of current memristive technology, and
memristive IMC. We also evaluate the characteristics yielded by
memristive stochastic IMC and compare them with those of the
traditional reliability techniques.
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1 INTRODUCTION
Running data-intensive applications on traditional Von Neumann
computers with separate memory and processing units results in
high energy consumption and slow processing speeds, primarily
due to a large amount of data movement between memory and
processing units. IMC is introduced to address this issue by process-
ing data in memory where they are stored. Phase Change Memory
(PCM), Magnetic Random Access Memory (MRAM), and Resistive
Random Access Memory (ReRAM) are emerging non-volatile tech-
nologies and referred to under the umbrella term of memristors.
Memristive technology is one of the promising technologies for
IMC due to providing the most energy benefits, high-density, fast
switching speed, and Complementary Metal-Oxide Semiconductor
(CMOS)-compatibility. Memristive technology is not a fully mature
technology yet and the Memristive devices have various reliabil-
ity issues such as endurance, durability, and variability. They are
prone to soft-errors in the logical states. This often causes signifi-
cant errors in the computation when using the traditional binary
representation. The inherent vulnerability of binary methods to
fault and noise (e.g., to bit flips) poses a challenge to the reliability
of memristive IMC. SC [1, 14] is a promising alternative to con-
ventional binary offering simple execution of complex arithmetic
operations and high tolerance to noise. SC uses a redundant repre-
sentation that can inherently tolerate high rates of noise. Unlike
positional binary representation, any bit-flip in a stochastic repre-
sentation leads to only a least significant bit (LSB) error as all the
bits have the same weight. This work combines the complementary
advantages of SC and IMC to achieve reliable and fast computation
in memristive memory. We study the reliability of memristive IMC
for some essential arithmetic operations when executed in both
binary and stochastic domains. We show that SC-based IMC is
more reliable and a promising solution compared to the baseline
in-memory binary techniques and to the state-o-the-art in-memory
binary techniques with improved reliability.

2 FUNDAMENTALS
In-MemoryComputation:As an umbrella term, IMC refers to any
computing architecture where the data travels a smaller distance
compared to its von-Neumann equivalent before processing. This
includes processing data on the memory module (also called near-
memory computing) and processing data on the memory chip. The
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Figure 1: Basic SC Operations.

latter can be divided into processing data on the periphery of the
memory array, or in-array computing. Processing data inside the
array leads tominimumdata travel and avoids unnecessary read and
write processes. Thus it can maximize efficiency. This work focuses
on in-array processing. In the realm of memristive IMC, stateful
logics are the primary method for in-array computing. Stateful
logics refer to logical operation in which the input and output
values are represented as the state (resistance) of memristors [3].
This is in contrast to non-stateful logics, where inputs or outputs
are represented as voltage or current levels.

Stochastic Computing: SC [1, 14] is an unconventional comput-
ing paradigm processing random bit-streams. Unlike conventional
binary, all digits of a stochastic bit-stream have the same weight.
The data value is determined by the probability of observing a ’1’
(0011010010 is representing 0.4). This redundant representation
provides a high tolerance to noise, as any bit-flip can cause only
an LSB error. The paradigm is also known for its ability for simple
execution of complex arithmetic operations. For example, multipli-
cation can be implemented using bit-wise logical AND [17]. Figure 1
shows some examples of basic SC operations.

SC in Memristive Memory: IMC has been employed to ad-
dress the long-time challenges in cost-efficient design of SC sys-
tems [18]. In prior work, the intrinsic non-deterministic properties
of memristors have been exploited to generate random bit-streams
in memory. In [9], input data in an analog format were directly
converted to random bit-streams by a stochastic group writing into
the memristive memory. The stochastic nature of ReRAM devices
was exploited in [6] to generate random bit-streams in memory.
These in-memory methods eliminate the significant overhead of
off-memory CMOS-based bit-stream generation [14]. A challenge
with these methods is that the bit-stream generation is inaccurate.
The bit-streams suffer from random fluctuations error [1]. Rela-
tively long bit-streams (e.g., 1024 bits or more) must be generated
for acceptable accuracy. SC with exploiting low-discrepancy (LD)
bit-streams can be as accurate as conventional binary computing
with shorter bit-streams. An in-memory method for generating
LD deterministic bit-streams is proposed in [17]. LD bit-streams
quickly and monotonically converge to the target value, achieving
high accuracy with much shorter bit-streams and free of random
fluctuations error.

Memristive IMC also provides massive bit-level parallelism. This
is ideal for SC systems with many bit-level operations. By applying
the same voltage along bit-lines/word-lines, wemay induce a logical
operation in all rows/columns of the memristive crossbar simulta-
neously. Further, crossbar arrays can be dynamically divided into
multiple partitions to support simultaneous but different in-row
(in-column) operations in the same row (column) [2, 5].

Soft-Error in Memristive Memory:Memristive technology
is prone to soft-errors, i.e., unwanted non-deterministic transient
changes in the logical states of memristors. These errors can be
categorized into three categories:

Intrinsic errors depend mainly on the technological details of the
device. For instance, variability in resistance (device-to-device and
cycle-to-cycle), threshold voltage, and switching speed are known
phenomena in memristors [20, 22]. These kinds of variability may
lead to unwanted states or state changes in memristors. Another
intrinsic effect is the retention [15, 20], which refers to a state drift
and change in the absence of external stimuli and due to leakage.
Some of these effects may be alleviated through good circuit design.

Operational errors mainly depend on the execution of certain
functions and operations on memristors. For instance, even though
the read-out can be designed such that it has a negligible effect
on the (microscopic) state of a memristor [15], the accumulative
effect of state drifts due to the read-outs can eventually lead to an
unwanted state change [15]. Another example is the incomplete
state change due to Material Implication (IMPLY) operation [4]. It
is known that the state of the output memristor after an IMPLY
operation in which both inputs are logical 0 (high resistance state)
cannot reach to the low resistance state [4], even though the re-
sistance may be low enough to be considered as logical 1. When a
memristor that has not experienced a full state change (here, the
output memristor holding the result of the IMPLY operation) is
used in consecutive operations, it may or may not cause an error
in one or more consecutive operations [20].

Random errors do not show any specific or recognizable pattern
or relations with other known phenomena, conditions, inputs, or
outputs. Such errors are observed [15] but not explained (at least
not yet). A potential cause for such errors, as observed in many
electronic devices, circuits, and systems, could be the cosmic radia-
tion. Given that the source and nature of such errors are unknown,
practically nothing can be done to remedy them.

3 RELIABILITY STUDY
In this work, we develop a Python-based cycle-accurate simulator
for reliability evaluation. The implemented simulator is used to
study the reliability of the data representation in binary and sto-
chastic format and also the basic operations such as multiplication,
subtraction, and maximum value function when executed in mem-
ristive memory in presence of different noise rates. We describe the
data formats and the in-memory logic of each operation—consist
of basic operations such as NOT and NOR—in this simulator. Our
simulator supports both binary and SC IMC operations. We ran-
domly inject noise with different rates of up to 20% into the data
and logical operations to evaluate their tolerance to soft-errors.

3.1 Data Value
Binary-radix is a compact representation: it can represent 2𝑁 dis-
tinct numbers using 𝑁 bits. A stochastic representation, on the
other hand, is a redundant representation: roughly 22𝑁 bits with
random and 2𝑁 bits with deterministic bit-streams are needed to
represent 2𝑁 distinct numbers [17]. This redundancy provides high
tolerance to noise (i.e., bit flip) as all bits have the same weight.
A single bit-flip results in a small error. Multiple bit-flips produce
small and uniform deviations from the nominal value. Soft-errors
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Table 1: MAE, MAX, and STD of 8-Bit Data Represented by Binary and Stochastic Format for Different Noise Rates.
SC-256 0% 0.1% 1% 2% 3% 5% 10% 15% 20% Binary-8 0% 0.1% 1% 2% 3% 5% 10% 15% 20%
MAE 0.00 0.39 0.78 1.33 1.73 2.73 5.26 7.82 10.3 MAE 0.00 0.10 0.95 1.96 2.90 4.67 9.06 12.9 16.7
MAX 0.00 0.39 1.17 2.34 3.12 5.07 10.1 15.2 20.3 MAX 0.00 51.5 75.0 81.2 87.5 87.8 88.2 96.8 97.2
STD 0.00 0.00 0.004 0.008 0.010 0.016 0.03 0.04 0.05 STD 0.00 0.019 0.05 0.08 0.09 0.11 0.15 0.18 0.19

in memristive devices can be inherently tolerated with such a repre-
sentation without using the traditional reliability techniques such
as Error Correcting Code (ECC) [10] or Triple Modular Redun-
dancy (TMR) [11]. Table 1 reports the Mean Absolute Error (MAE),
maximum absolute error (MAX), and standard deviation (STD) of
representing 8-bit precision data using the binary and stochastic
format when injecting noise (i.e., flipping bits) with different rates.
The data are represented in binary format by 8 bits and in stochastic
format by 256 LD bit-streams. We randomly inject noise into the
bit positions and find the mean, maximum, and STD of the error in
the represented values for 100,000 iterations. The MAE and MAX
numbers are multiplied by 100 and shown in percent. As shown in
Table 1, the binary format shows on average more than 70% higher
MAX rate compared to the stochastic representation. The maximum
error in the binary representation quickly converges to an unac-
ceptable absolute error rate of more than 51% for the 0.1% noise rate
and more than 75% error for the 1% noise rate. On the other hand,
the stochastic representation provides a much higher tolerance
to noise by showing an MAE and a maximum error rate of 0.78%
and 1.17% for 1% noise rate, and 2.73% and 5.07% for 5% noise rate,
respectively. The maximum error in the stochastic representation
increases proportionally with the noise rate, while in the binary
format quickly converges to unacceptably high error rates of more
than 50%.

3.2 Multiplication
For reliability evaluation of in-memory multiplication, we imple-
mented the MAGIC-based fixed-point multiplication technique pro-
posed in [7] and the SC-based in-memory multiplication technique
developed in [17]. For fixed-point binary, we evaluate in-memory
multiplication of two 8-bit precision data. For the SC multiplication,
we generate and process LD bit-streams of 256 bits. Exhaustively
testing multiplication of two 8-bit precision data on every possible
pair of input values gives an MAE rate of 0.19% when processing
LD bit-streams of 256 bits.

The binary multiplication method of [7] uses a partial product
multiplication algorithm and reuses the memristor cells during
execution. A two-input multiplication using this method takes a
total of 13𝑁 2 − 14𝑁 + 6 cycles. SC multiplication involves perform-
ing bit-wise logical AND on independent bit-streams. To provide
independence between bit-streams, we generate bit-streams with
different LD distributions [17]. To execute AND operation, MAGIC
NOR is performed on the inverted version of bit-streams of each
operand. Independent of the data precision (i.e., bit-stream length),
SC multiplication with this method is executed in only six cycles.

Table 2 shows the noise evaluation of the implemented binary
and SC in-memory multiplication methods. We evaluate the relia-
bility in three cases of injecting noise into 1) input data, 2) logical
operations, and 3) both input data and logical operations. As it can
be seen, although the SC approach cannot provide a 0.00% error
rate in the ideal case of having no noise, it shows a significantly

high tolerance to noise in all three cases. For example, for the case
of having 1% noise rate in the logical operations, the SC method
achieves an MAE of 0.84% and a MAX of 2.12%, whereas the binary
method shows an MAE of 6.66% and MAX of more than 87%.

We further implemented the traditional TMR method [11] to
improve the reliability of the logical operations in the in-memory
binary multiplication. Since the voting logic is also vulnerable to
noise, we implemented two cases of ideal (Ideal-TMR) and non-ideal
(TMR) voting for the modified design. Table 3 reports the MAE and
MAX rates. Compared to the numbers in Table 2, the MAE and
the MAX reduce up to 2.7% and 31.3%, respectively, with the ideal
voting. With non-ideal voting, the MAE and the MAX reduce up to
1.5% and 9.3%, respectively. As it can be seen, the TMR technique is
more effective when the noise rate is low. For example, for 0.1%, the
MAX reduces from 56.3% in Table 2 to 25%, with the ideal TMR in
Table 3. But again, if noise also impacts the voting logic, the MAX
quickly increases to high rates. Compared to the SC method, the
TMR method provides a lower MAE but a significant MAX for a
0.1% noise rate. For high noise rates, the SC method achieves much
lower error rates. The TMR method further costs 3× latency or
area [11].

3.3 Addition/Subtraction
Binary addition techniques for memristive IMC are proposed in [21].
A full-adder is implemented with eight NOR and four NOT operations
in 13 cycles. Subtraction can be implemented using this addition
technique with inputs in two’s complement representation. We im-
plemented the latency optimized adder of [21] for reliability evalua-
tion. An OR-based SC addition is implemented in [6]. They generate
OR of 𝑁 bits in a single cycle. The operation is executed in parallel
for the entire bit-stream and takes only one cycle to compute the
final output. SC subtraction can be realized by performing bit-wise
XOR on correlated bit-streams [1]. In-memory XOR can be performed
by three NOR and two NOT operations, as elaborated in [17]. It can
also be implemented using FELIX [5] by executing single cycle
OR and NAND in crossbar memory. To be faster, SIXOR [19] can be
used, which implements XOR in a single cycle. For reliability evalu-
ation of SC subtraction, we use SIXOR. Table 4 compares the MAE
and MAX rate of 8-bit subtraction using XOR operation and 256-bit
correlated bit-streams for the SC approach with those of the 8-bit
binary subtraction with and without TMR. For the TMR technique,
we again evaluate both ideal and non-ideal voting logic. In both
SC and binary approaches, noise is only injected into logical opera-
tions. As shown, the TMR technique can significantly improve the
MAE of the binary subtraction. MAX error, however, is still high for
noise rates as small as 0.1%. SC subtraction not only provides high
accuracy (0.0% error rate when there is no noise) but also achieves
a high tolerance to error. For example, for the noise rate of 5%, the
binary approach shows 25.3% MAE with ideal-TMR while the SC
approach achieves 2.72% MAE.
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Table 2: MAE, MAX, and STD of In-Memory Binary and SC 8-Bit Multiplication for Different Noise Rates for three cases of
Injecting Noise into Input Data, Logic Operations, and Both Input and Logic.

SC-256 0% 0.1% 1% 2% 3% 5% 10% 15% 20% Binary-8 0% 0.1% 1% 2% 3% 5% 10% 15% 20%
Input-MAE 0.19 0.37 0.69 1.17 1.48 2.26 4.26 6.19 8.1 Input-MAE 0.0 0.10 0.96 1.91 2.76 4.44 8.06 11.1 13.8
Input-MAX 0.95 1.67 3.05 5.03 6.54 10.3 19.9 28.9 37.5 Input-MAX 0.0 49.4 73.2 73.4 73.6 77.6 89.5 92.3 94.1
Input-STD 0.001 0.003 0.005 0.009 0.011 0.017 0.03 0.05 0.06 Input-STD 0.0 0.01 0.05 0.06 0.08 0.09 0.12 0.14 0.15
Logic-MAE 0.188 0.39 0.84 1.54 2.00 3.16 6.19 9.19 12.3 Logic-MAE 0.0 0.87 6.66 10.8 13.9 18.3 24.7 28.1 30.2
Logic-MAX 1.011 1.34 2.12 3.16 4.13 5.84 10.9 15.9 21.0 Logic-MAX 0.0 56.3 87.7 94.3 97.0 99.8 99.4 99.9 99.9
Logic-STD 0.001 0.002 0.004 0.008 0.010 0.016 0.03 0.05 0.06 Logic-STD 0.0 0.03 0.09 0.12 0.13 0.16 0.20 0.22 0.23
Both-MAE 0.19 0.55 1.28 2.37 3.07 4.80 8.99 12.8 16.1 Both-MAE 0.0 0.95 7.20 11.6 14.8 19.2 25.4 28.6 30.6
Both-MAX 1.01 2.06 4.12 7.38 9.42 15.2 29.7 38.3 48.1 Both-MAX 0.0 59.5 88.8 99.0 98.1 99.8 99.8 99.9 99.8
Both-STD 0.01 0.004 0.007 0.013 0.017 0.03 0.05 0.07 0.08 Both-STD 0.0 0.03 0.10 0.12 0.14 0.16 0.20 0.22 0.23

Table 3: MAE and MAX of In-Memory Binary 8-Bit
Multiplication with TMR for Different Noise Rates for case
of Injecting Noise into Logic Operations

Binary-8 0% 0.1% 1% 2% 3% 5% 10% 15% 20%
Ideal-TMR-MAE 0.0 0.16 4.49 8.43 11.2 15.6 22.0 25.7 28.0
Ideal-TMR-MAX 0.0 25.0 65.5 67.0 79.2 90.8 98.2 99.6 99.8

TMR-MAE 0.0 0.27 5.20 9.66 13.0 17.7 24.3 28.3 31.0
TMR-MAX 0.0 50.0 83.2 85.0 95.1 98.0 99.3 99.4 99.5

Table 4: MAE and MAX of 8-Bit In-Memory SC and Binary
Subtraction with and without TMR for Different Noise Rates
for case of Injecting Noise into Logic Operations

SC-256 0% 0.1% 1% 2% 3% 5% 10% 15% 20%
Logic-MAE 0.0 0.39 0.78 1.33 1.73 2.72 5.24 7.78 10.3
Logic-MAX 0.0 0.39 1.17 2.34 3.12 5.07 10.1 15.2 20.3
Binary-8 0% 0.1% 1% 2% 3% 5% 10% 15% 20%
Logic-MAE 0.0 1.06 9.15 15.8 21.0 27.2 33.5 34.8 34.9
Logic-MAX 0.0 97.9 99.2 99.6 99.6 99.6 99.6 99.6 99.6

Ideal-TMR-MAE 0.0 0.05 3.75 10.3 16.4 25.3 33.1 35.2 35.6
Ideal-TMR-MAX 0.0 75.0 99.2 99.2 99.2 99.6 99.6 99.6 99.6

TMR-MAE 0.0 0.13 4.62 11.8 17.9 26.4 34.1 34.7 35.2
TMR-MAX 0.0 93.7 99.2 99.2 99.2 99.6 99.6 99.6 99.6

3.4 Minimum/Maximum
In-memory MAGIC-based execution of minimum and maximum
functions in binary and stochastic formats are proposed in [2]. Bi-
nary execution of each of these two requires one 𝑁 -bit comparator
and one 𝑁 -bit 2-to-1 multiplexer. If implementing both functions,
the output of the comparator can be shared. The 𝑁 -bit comparator
is implemented by 11𝑁 − 2 NOR and 7𝑁 − 2 NOT logic gates. Each
multiplexer is implemented by 3𝑁 NOR and 3𝑁 NOT operations. Ex-
ecution of both functions completes after 6𝑁 + 15 cycles. This is 63
cycles for the case of processing 8-bit precision data.

Bit-wise logical AND and OR on correlated stochastic bit-streams
give the minimum and maximum bit-stream, respectively. The AND
operation is realized by first inverting the bit-streams through NOT
and then performing bit-wise NOR on the inverted bit-streams, in a
total of three cycles. On the other hand, the OR operation is executed
by first performing bit-wise NOR on the input bit-streams and then
NOT on the outputs of the NOR operations [2]. This is executed
in two cycles. Similar to the SC multiplication and addition, the
latency of SC minimum and maximum functions is independent
of the bit-stream length. Table 5 compares the performance of the

binary and SC-based maximum function for different noise rates
applied to input data, logic operations, or both. Similar to what we
observed for multiplication and addition, overall, SC achieves lower
MAE, MAX, and STD compared to those of the binary-based IMC
maximum function. Only for the case of having a noise rate equal
to 0.1%, the binary technique shows a lower MAE compared to SC
when noise is corrupting either inputs or logical operations.

4 DISCUSSION AND CONCLUSIONS
The traditional binary encoding is inherently more vulnerable to
soft-errors compared to uniform stochastic representation. With
binary encoding, the error (i.e., bit-flip) on the most significant
bits of the data is critical, leading to significant errors in the data
values and computations. Binary computing in memory involves a
chain of operations in which the error in one step can propagate
to the following steps. When implementing complex operations
such as multiplication in memory based on binary encoding, the
errors in different stages can accumulate, resulting in an unaccept-
able output. MAGIC-based in-memory multiplication, for example,
requires many NOR operations executed during a large number of
cycles [7]. Even failure in a small number of operations can lead
to large overall error rates. IMC based on binary encoding further
suffers from endurance and drift issues. Within the lifetime of mem-
ristive memories, a limited number of writes is possible. With the
complexity of binary computations, which requires a large number
of intermediate write operations, relying on memristive IMC is
challenging.

SC representation and operations are inherently tolerant of soft-
errors as any bit flip leads to only a LSB error [1]. Multiple bit-flips
can even compensate each other; a state change from 0 to 1 on one
bit position can be compensated by a state change from 1 to 0 on
another bit position. Unlike binary computing, the computations
in stochastic domain are extremely simple and inherently parallel.
The operation on one bit is totally independent of the operation
on other bits. Failure in one operation can only change one bit
position and so have minimal impact on the output value. Error
propagation is significantly lower compared to the propagation in
complex binary operations. Simplifying the operations with SC can
further reduce the processing latency significantly. For example,
employing SC can reduce the latency of multiplying two 8-bit data
from 726 cycles [7] to only six cycles [17] with no accuracy loss.

Table 6 compares the latency of basic arithmetic operations with
the state-of-the-art binary and SC IMC techniques. As can be seen,
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Table 5: MAE, MAX, and STD of In-Memory Binary and SC 8-Bit Maximum Function for Different Noise Rates for three cases
of Injecting Noise into Input Data, Logic Operations, and Both Input and Logic.

SC-256 0% 0.1% 1% 2% 3% 5% 10% 15% 20% Binary-8 0% 0.1% 1% 2% 3% 5% 10% 15% 20%
Input-MAE 0.0 0.32 0.77 1.42 1.83 2.86 5.39 7.73 9.90 Input-MAE 0.0 0.11 1.25 2.64 3.65 5.98 11.4 16.0 19.5
Input-MAX 0.0 0.78 2.34 4.68 6.25 10.15 20.31 29.29 38.67 Input-MAX 0.0 50.0 62.5 75.0 87.5 92.5 92.1 98.4 98.4
Input-STD 0.0 0.002 0.006 0.011 0.014 0.02 0.04 0.06 0.07 Input-STD 0.0 0.02 0.06 0.09 0.10 0.13 0.17 0.19 0.21
Logic-MAE 0.0 0.39 0.78 1.34 1.73 2.73 5.27 7.80 10.3 Logic-MAE 0.0 0.69 6.18 10.8 14.5 19.7 26.3 29.1 30.7
Logic-MAX 0.0 0.39 1.17 2.34 3.12 5.07 10.2 15.2 20.3 Logic-MAX 0.0 96.5 98.0 98.4 98.8 98.8 99.2 99.2 99.2
Logic-STD 0.0 0.000 0.003 0.008 0.01 0.02 0.03 0.04 0.05 Logic-STD 0.0 0.05 0.14 0.17 0.19 0.21 0.22 0.22 0.23
Both-MAE 0.0 0.50 1.22 2.23 2.88 4.48 8.22 11.5 14.3 Both-MAE 0.0 0.89 7.10 12.3 16.4 21.7 28.2 30.3 31.3
Both-MAX 0.0 1.17 3.51 7.03 9.37 15.2 28.1 38.6 47.2 Both-MAX 0.0 97.7 98.0 98.4 98.8 98.8 98.8 99.2 99.2
Both-STD 0.0 0.003 0.008 0.014 0.019 0.02 0.05 0.07 0.08 Both-STD 0.0 0.05 0.15 0.18 0.20 0.21 0.23 0.23 0.23

Table 6: Latency (# of clock cycles) Comparison of Binary
and SC Arithmetic IMC Techniques

Operation IMC Ref # of clock cycles for 4,8,N Data Width
4 8 N

Addition. Bin. [21] 49 97 12𝑁 + 1
SC [6] 1 1 1

Subtract.

Bin. [21] 49 97 12𝑁 + 1
SC [17] 5 5 5
SC [5] 2 2 2
SC [19] 1 1 1

Multiplic. Bin.

[7] 158 726 13𝑁 2 − 14𝑁 + 6
[8] 195 871 15𝑁 2 − 11𝑁 − 1
[13] 77 237 15𝑁 2 + 16𝑁 − 19
[16] 101 279 (10𝑁 + 2)𝑙𝑜𝑔𝑁 + 4𝑁 + 2
[12] 103 211 𝑁𝑙𝑜𝑔𝑁 + 23𝑁 + 3

SC [17] 6 6 6
Maximum
Minimum

Bin. [2] 39 63 6N+15
SC [2] 5 5 5

the latency of SC-based IMC operations is constant and independent
of data width. The longtime inaccuracy weakness of SC operations
is now addressed by generating and processing LD bit-streams. SC
with LD bit-streams can provide completely accurate results [17].
For most SC operations, short LD bit-streams can produce accept-
able results with low error rates, and hence, the memory space
can be used efficiently. The current challenges in reliable fabrica-
tion of memrisitive devices and IMC using memrisitive memorises
demand for employing unconventional noise-tolerant computing
techniques such as SC for reliable IMC. The computation results
may not be 100% accurate, but they are achievable with current
technology.
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