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Power Efficient High-Level Synthesis by Centralized
and Fine-Grained Clock Gating

Mohsen Riahi Alam, Mostafa Ersali Salehi Nasab, and Sied Mehdi Fakhraie

Abstract—Nowadays, power is a primary concern in digital
circuits and clock distribution networks are particularly a sig-
nificant power consumer. Therefore, clock gating is an effective
technique in saving dynamic power by reducing the switching
activities. In this paper, we propose a centralized and fine-grained
microarchitecture-level clock gating for low power hardware
accelerators which are automatically designed by high-level syn-
thesis (HLS) tool. The basic principium of our idea is not to use
any extra computation for generating clock enabled signals and
exploit exiting signals of finite state machine for controlling the
datapath clock network. After determining the current state in
finite state machine, clock sub-tree of current state is enabled
and the other sub-trees are disabled with a slight increase in cir-
cuit area. Our approach is implemented within an HLS design
flow for automatic low power hardware accelerator generation
in application specific integrated circuit design. Experimental
results are obtained on a set of representative benchmark pro-
grams. Depending on the circuit size and number of registers, it is
shown that 47%–86% reduction in power dissipation is observed.

Index Terms—Clock gating, finite state machine, high-level
synthesis (HLS), low power design.

I. INTRODUCTION

THE BROAD usage of portable computing devices has
shifted the major concern of very large-scale integra-

tion (VLSI) design from high speed to low power. As we know,
a specialized hardware accelerator will improve performance
and energy efficiency compared to general purpose implemen-
tations. Heterogeneous and specialized architecture design is
an appropriate technique to optimize power consumption in
VLSI design.

Manual hardware design is difficult because it is very
time demanding and requires complex register transfer level
(RTL) coding, which is error prone and difficult to debug. On
the other hand, the broad application domains and emerging
application specific designs make us to incorporate fast and
automatic high-level synthesis (HLS) tools. These tools help
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Fig. 1. HLS design flow.

us to generate an RTL design realizing the specified behav-
ior and also satisfying the design constraints in an easier and
automatic manner.

HLS starts with the algorithmic description of an applica-
tion (standard C/C++ program or SystemC description), RTL
component library (including component characteristics such
as area, delay, power, etc.), and design constraints (cost, per-
formance, power consumption, resources, pin-count, testability
criteria, etc.) and automatically generates RTL design of dat-
apath and control logic. Two primary issues that all hardware
designers must overcome are design cost and time-to-market.
HLS reduces the cost and time-to-market significantly, while
manual hardware design is more expensive and time con-
suming. HLS also expedite the design space exploration
for efficient hardware/software co-design. Traditionally, HLS
design objectives were developing small and fast designs.
However, today, power consumption has gained more concerns
as a more important design constraint.

New energy efficient architectures in age of dark sili-
con [1]–[3] are based on HLS tools which are used to auto-
matically synthesize specialized processors for a wide range
of applications. Therefore, power efficient designs exploiting
HLS techniques are inevitable. Three main stages of HLS pro-
cess, compilation, design algorithms, and RTL generation are
shown in Fig. 1. Low power techniques in HLS can be applied
to all of these stages. Compiler optimizations as the first stage
of HLS can significantly improve hardware quality and power
consumption of generated RTL designs [4], [5].
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Recently, some HLS design algorithms are proposed to
alleviate the power consumption. Yeh and Wang [6] pre-
sented a clock-skew scheduling scheme in HLS flow and
evaluated it with multithreshold CMOS technology for power
and speed optimizations. Sengupta and Sedaghat [7] had
introduced a novel multistructure design space exploration
system based on genetic algorithm that solves the problem
of integrated scheduling, allocation, and binding in HLS.
Lhairech-Lebreton et al. [8] presented a flow for generating
hardware accelerators for digital signal processing applications
by bit-width aware HLS flows.

There is a tight correlation between the RTL design and
power consumption in HLS. By applying RTL power opti-
mization techniques to RTL generation process of HLS, low
power HLS design could be achieved. These techniques can
be roughly classified to: interconnect optimization, switching
activity reduction, power gating, and clock gating. In this
paper, we propose a new clock gating technique for HLS
tools targeting design of low power hardware accelerators in
application specific integrated circuit (ASIC) design flows.

Power consumption consists of dynamic and leakage power.
In the contemporary CMOS technologies, due to scaled
devices, active leakage power is a big challenge. Power gat-
ing is one of the effective techniques to reduce active leakage
power. Several different methods of power gating have been
developed so far. In regard to the case, we investigated in this
paper, we will review two FSM-based power gating techniques
in Section II.

Dynamic power is dissipated by a circuit during its opera-
tional mode. In synchronous circuits, the clock signal switches
at each clock cycle and drives a large capacitance. As a result,
the clock signal is a major source of dynamic power dissipa-
tion. In synchronous circuits, the clock of some sequential
elements can be disabled without affecting the logic function-
ality. This technique is known as clock gating. Clock gating
is the most effective and widely used technique for power
saving. According to the context and design purpose, clock
gating has been performed at different levels of abstraction
and granularities.

1) Architecture-Level Clock Gating: In system-on-chip
design, the clock signal of the whole processor core or a
specific module is disabled until it receives a request from
operating system or hardware power management unit. This
is typically used while processor or the target module is in
sleep or wait for interrupt state.

2) Microarchitecture-Level Clock Gating: Large architec-
ture systems (e.g., superscalar processor) are composed of
various logic blocks. These blocks may be mutually exclusive
and are not exploited at the same time. Designer can locate the
idle blocks and create corresponding clock gating conditions
at RTL design phase to enable/disable clock of these blocks.
Proposed techniques in [9]–[11] are classified in this level.

3) Circuit-Level Clock Gating: Most of the previous clock
gating techniques are classified in this level; we will review
some of them in Section II. For clock gating schemes at the
circuit-level, some gating conditions have been extracted from
RTL or gate-level based on data dependencies. These gat-
ing conditions have been exploited to enable/disable some

branches of clock tree without affecting the architectural
behavior.

Considering the limitations and overheads of previous
circuit-level methods, we look at the subject from a different
point of view and introduce a novel microarchitecture-level
clock gating method for finite state machine with datapath
(FSMD) circuits. In summary, the key contributions of our
method which reduce the dynamic power of the datapath clock
tree in FSMD architecture are as follows.

1) Our method exploits the FSM signals to manage clock
gating conditions at RTL to avoid undesirable tim-
ing, area, and power overhead of clock control (gating
function) logic circuit.

2) Our proposed centralized method gates the clock signals
as close as to the root of clock tree to avoid energy
wasting in the clock tree wires and repeaters.

3) Our state oriented fine-grained clock gating method
routes clock signals only to the FSMDs current state
registers which are a little portion of circuit’s registers.

4) Our clock gating methodology has been integrated into
an HLS design flow and performs RTL clock gating
automatically.

This paper is organized as follows. In Section II, we briefly
introduce some of the previous work on clock gating. The
basics behind our idea, the motivation, and our main model
will be discussed in Sections III and IV. Section V presents
the architectural implementation and considerations of our pro-
posed idea. The experimental platform and the way that we
modify it for our clock gating purpose will be asserted in
Section VI. In Section VII, our experimental results will be
presented. Finally, this paper is concluded in Section VIII.

II. RELATED WORK

Almost all the previous clock gating researches focus on
clock gating conditions. These approaches first detect clock
gating conditions and then create the suitable clock control
logic for implementing clock gating [12]–[14]. Clock control
logic usually adds undesirable timing, area, and power over-
head to the main circuit. Previous researches have attempted
to decrease these overheads. Gating conditions are classified
in two types observable don’t care (ODC) and stability con-
ditions (STCs). When next state values of registers cannot be
observed in the next clock cycles, the clock of register can be
gated in those clock cycles by using ODC conditions. STCs
are used for clock gating when register values do not change
for two or more continuous clock cycles [12].

Traditional XOR-based clock gating circuits compare flip-
flops (FFs) output with their present input and disables the next
clock cycle when values are equal. This clock gating method
is categorized in STC and has area and power overhead.
An optimized XOR-based clock gating scheme is proposed
in [15]. This scheme chooses only a subset of FFs to be
gated selectively, and the complexity of choosing candidate
FFs is reduced from exponential to linear. The XOR gates
producing enable signals incur some delay and area overhead.
Furthermore, since the clock signal is gated near the destina-
tion FFs, it causes some power dissipation in routing the clock
signal.
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Wimer and Albahari [16] proposed a look-ahead clock gat-
ing scheme which is categorized in XOR-based clock gating
techniques. It generates the clock enabling signal of the target
FF one cycle ahead of time. This technique enables the tar-
get FF according to the data of the FFs that the target FF is
dependent to. Likewise in our clock gating technique, clock
gating cells in FSM provides the enabling signals during pre-
vious clock cycle. However, our clock gating implementation
has a negligible area overhead.

Babighian et al. [13] proposed an RTL clock gating method
based on ODC conditions which is suitable for large-scale
designs. Their proposed ODC conditions are extracted from
existing steering logics such as multiplexers, tri-state buffers,
and enable states. Therefore, for ODCs detection no redundant
computation is needed. Fraer et al. [12] presented a method
that unifies ODC and STC clock gating approaches into one
framework to create gating conditions. In their method, finding
STCs is robust and scalable. Due to the complexity of exact
ODC condition computing, they computed a weaker ODC con-
dition that is still safe for clock gating. This approach requires
a lot of enable signals and like previous methods it also needs
extra logic for generating these activation signals.

The most recent gate-level clock gating technique which
simplifies clock control logic and reduces area overhead is
proposed in [14]. The idea is to generate gating functions
(clock control logic) by using the existing logic as far as
possible. For this purpose, they use matching factored forms
of gating functions with those of existing logic nodes. Some
microarchitecture-level clock gating methods use FSM infor-
mation for disabling clock signals. Benini and De Micheli [17]
described a technique based on STC for the automatic syn-
thesis of gated clocks for FSMs. These STCs are based on
identifying self-loops in FSMs. When FSM arrives at a self-
loop state, the clock is turned off. In this idle situation,
the inputs of the combinational logic block do not change.
If the input values cause to have an FSM state transition, again
the clock signal is enabled and the circuit resumes operation.
To identify self-loop conditions, some additional computations
are needed. These computations are executed by extra logic
circuits. Sometimes, there are several idle conditions in FSM
design, so detecting all of them is time and power consuming.
To save time, they have restricted the number of idle condi-
tions and finally select a subset of these idle conditions that
lead to the minimum power dissipation. Two major limitations
of this technique are unsupported large state transition graph
representations and also required combinational logic blocks
for activation function.

Our proposed scheme as well as the one presented in [17]
control clock gating with FSM signals, however, they have dif-
ferent optimization goals. Benini and De Micheli [17] focused
on FSM power optimization and verify their idea using FSM
benchmarks. However, our benchmarks depict that contribu-
tion of FSM power consumption (with one-hot assignment) is
in average less than %5 of the whole FSMD design. Therefore,
we focus on the datapath power optimization by enabling
suitable clock sub-tree in each cycle.

Exploiting some architectural properties of FSMs such as
their capability to be decomposed into independent parts can

be used in clock and power gating methods [18]–[20]. For
instance, the FSM decomposition feature for designing low
power systems has been proposed in [20]. The main idea is to
decompose the FSM into two sub-FSMs that jointly produce
the functional behavior of the original FSM but with lower
power consumption. When a state transition occurs at one of
the sub-FSMs, the clock of the other sub-FSM will be disabled
without affecting the FSMs main functionality. Similar to our
proposed scheme, this paper is applied in architectural-level.
However, the level of our clock gating scheme’s granularity
is in the order of a single state instead of a subset of states.
Consequently, our proposed clock gating would be done in a
more fine-grained manner.

Usami and Yoshioka [18] proposed an RTL run time power
gating method for FSM circuits. This leakage reduction tech-
nique exploits the dynamically detected nonoccurring state
transition condition signals for controlling sleep transistors.
In [19], FSMD power gating method is proposed. In this
method, the main FSMD is split into sub-FSMDs. At any
given moment only one sub-FSMD circuit is turned on and
the others are power gated. At run time, FSM behavior signals
are predicted to determine which sub-FSMD circuit should be
turned on next. Since the wake-up time of the power gated cir-
cuits have a delay overhead and hence reduce the performance,
the two aforementioned methods divide the FSMD into a few
state subsets and apply the power gating at the granularity of
state subsets. Therefore, to avoid performance degradations,
they cannot do power gating in a highly fine-grained manner.
Since clock gating has not such an overhead, we proposed
fine-grained clock gating to enable/disable clock sub-trees in
each state.

III. MOTIVATION

As mentioned in Section II, clock gating is a common tech-
nique in low power design and significantly decreases dynamic
power. To illustrate this circumstance and further motivate
this paper, we employed RTL simulations with the register
toggle trace and simple FF energy model. We used an HLS
framework with six CHStone [21] benchmarks (as described in
Section VI) and also we use the FF energy model introduced
in [22].

In this model, without considering the glitches, when clock
pulse arrives at edge-triggered FFs, the values may toggle or
remain unchanged. If circuit works for n clock cycles, the
average consumed dynamic energy for each FF is obtained by

E = ETNT + ERNR (1)

where ET and ER are consumed dynamic energies by FF when
its value is toggled or remain unchanged at clock arrival time,
respectively. The respective number of events during n cycle
which the FF value is toggled or remain unchanged are NT

and NR where n = NR + NT . In ordinary FSMD design, when
the datapath circuit is clocked, all FFs receive the clock sig-
nal and consume energy regardless of whether or not there
is data toggle. Although idle states’ FFs do not change for
sure, underlying current (active) state FFs values may change.
Thus, in each clock arrival time, datapath FFs are classified in
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TABLE I
COMPARING NUMBER OF ACTIVE STATE FFS AND IDLE STATES FFS IN CHSTONE BENCHMARKS

three groups: 1) current state toggled FFs; 2) current state
unchanged FFs; and 3) idle states FFs. To determine the
effect of clock gating on the amount of consumed energy in
benchmark circuits, we use an energy model for FFs in our
experiments by exploiting exact and nonprobability data-to-
clock toggling ratio. From (1) and FFs portioning, the dynamic
energy consumption for all FFs in datapath during one clock
cycle can be modeled as

EClock_Cycle = ETNCST + ERNCSR + ERNIS. (2)

In each cycle, NCST and NCSR are, respectively, the number
of toggled and unchanged FFs in current state. While NIS is the
number of FFs in idle states those are not certainly toggled.
Energy consumption in all clock cycles is expressed by the
following equation:

ETotal =
n∑

i=1

(
ETNCSTi + ERNCSRi + ERNISi

)
(3)

where n is the number of clock cycles. ET and ER are architec-
ture and technology dependent and are the same for all FFs.
So the resulting equation is

ETotal = ET

n∑

i=1

NCSTi + ER

n∑

i=1

NCSRi + ER

n∑

i=1

NISi . (4)

The first term of (4) is an inevitable energy consumer as it
is used to latch the logic outputs, while the second and third
terms can be avoided to reduce energy wasting. Therefore,
clock gating can prevent energy wasting in these two parts.
The effectiveness of clock gating methods is measured by data-
to-clock toggling ratio [18]. According to (4), the maximum
efficiency is achieved by elimination of both second and third
terms through ideal clock gating implementations. These two
terms have different granularities and energy wasting. Thus,
different clock gating strategies in different abstraction levels
can be used together to eliminate each term.

We define two metrics to determine contribution of each
term in energy wasting. The ratio of current state’s not-toggled
FFs to all FFs of circuit is called M1 and the ratio of idle states’
FFs to all FFs is introduced as M2

M1 =
∑n

i=1 NCSRi∑n
i=1

(
NCSi + NISi

) = (1 − PT)
∑n

i=1 NCSi∑n
i=1

(
NCSi + NISi

) (5)

TABLE II
CURRENT STATE’S FFS TOGGLING RATIO

M2 =
∑n

i=1 NISi∑n
i=1

(
NCSi + NISi

) = 1 −
∑n

i=1 NCSi∑n
i=1

(
NCSi + NISi

) (6)

where PT is the probability of toggling in current state’s FFs.
Analyzing information of register toggle traces through RTL
simulations which are presented in Tables I and II helps us to
calculate these sigma expressions and exact value of PT .

Granularities in second and third terms of (4) are determined
based on single FFs and state FFs, respectively. Circuit-level
clock gating is suitable to avoid energy wasting in the two
aforementioned granularities. However, circuit-level clock gat-
ing techniques have more hardware and timing overheads. On
the other hand, in FSMD circuits, FSM module determines the
active state in each cycle. Therefore, by using a higher level
decision making method, clock gating techniques can use FSM
information to enable/disable clock signals. Consequently, the
third terms of (4) would be eliminated. Choosing between
two clock gating methods depends on the amount of energy
wasting in the second and third terms of (4) and hardware
overheads of each method.

The results of Tables I and II indicate that M1 (the effect
of the second term) is very smaller than M2 (the effect
of the third term) in all benchmarks. Therefore, the third
term has lower amount of energy wasting compared with the
second term. Moreover, using FSMs information for clock gat-
ing does not have any extra overheads. Therefore, applying
microarchitecture-level clock gating method based on FSM
to eliminate the third term of (4) is much more efficient
than the circuit-level clock gating technique which also cov-
ers nontoggling FFs (the second term) in the current state.
This is the reason that we choose the second method to apply
clock gating targeting idle state FFs [the third term of (4)].
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Therefore, we partition FFs into current state and idle states
to determine how much wasted energy is reduced by applying
clock gating method. In this way, (4) can be rewritten as

ETotal = [ETPT + ER(1 − PT)]
n∑

i=1

NCSi + ER

n∑

i=1

NISi . (7)

Table I illustrates the superiority of the number of idle
states’ FFs to the number of current state’s FFs in the selected
benchmarks [sigma expressions in (7)]. Therefore, gating
the clock of idle states’ FFs decreases the wasted energy
significantly.

IV. BASIC IDEA

In FSMD design, at any moment only one state is active
and the others are idle. We assume idle states are catego-
rized into temporal and spatial idle states. Depending on the
FSMDs inputs, the useless states during FSMD operation are
spatial idle states. Other states which are active in the speci-
fied time span and idle in other times are called temporal idle
states. According to Fig. 2(b), our idea is based on splitting the
clock tree to multiple sub-trees which are routing the clock for
each state in datapath. In each clock cycle, sub-tree of active
(current) states is enable and all idle states clock sub-trees
are disable. There is no difference between the temporal and
spatial idle states in our method. Therefore, regardless of the
FSMDs inputs, the clock gated FSMD can be used in different
conditions with runtime decision.

The power model proposed in the previous section shows
the amount of power saving when only the underlying clock
tree of current state is activated (instead of whole data path
clock tree). In the other word, the number of charged and
discharged input capacitances of FFs in leaf of clock tree is
decreased and consequently dynamic power consumption is
reduced. The other important power consumer parts in clock
trees are wires and repeaters which route the clock from source
to sequential elements. In this section, we present a geometric
model to show how our approach reduces the length of active
parts of the clock tree and hence reduce dynamic power con-
sumption. Weste and Harris [23] introduced a model for energy
per unit length to send a bit on a wire. This model consid-
ers both wire and repeater capacitances for repeaters that are
optimally sized for minimum delay

E

L
= 1.87CωV2

DD. (8)

Clock tree is made of some wires and repeaters, so switched
capacitance in the clock tree consist of both capacitances of
these wires and repeaters. Without considering the number of
FFs that are fed by this clock signal, the power per unit length
of clock tree depends on clock frequency ( f ), supply voltage
(VDD), and wire capacitances (Cω), and is defined as

Punit_length = 1.87CωV2
DD f . (9)

Total switching power of the clock tree is

Pclock_tree_switching = 1.87CωV2
DD f L (10)

where L is the length of clock tree. As shown in Fig. 2(a), with-
out clock gating, all sequential elements of FSMD are fed by

Fig. 2. Clock tree scheme. (a) Conventional distributed clock tree for FSMD.
(b) Our approach: separated clock sub-tree for each state in datapath which
is generated with FSM and clock gate cells.

one spread clock tree. As mentioned before, at any moment,
only one state is active in FSMD design. However, the whole
clock tree is toggling as depicted in Fig. 2(a). Preventing these
wasteful switchings in the clock tree leads to more power sav-
ing. As shown in Fig. 2(b), to achieve this goal, we propose a
microarchitecture-level clock gating approach by adding some
clock gating cells to FSM for enabling separate clock sub-
trees in each state of the datapath. After adding clock gating
cells, clock tree will be partitioned in two parts [as shown
in Fig. 2(b)]. The first part is the clock tree of the underly-
ing FSM logic including clock gating cells. Compared with
the prior FSM, the length of this clock tree is a little longer.
The reasons for the clock tree growth are the occupied area of
clock gating cells (Table IV) and the new branches of clock
tree which bring the clock signal to the clock gating cells.
The second part is the set of sub-tree of underlying sequen-
tial elements of each state in datapath. At each cycle, current
state’s clock sub-tree is enabled. Hence, the average switch-
ing power of the clock tree during the ith active state (without
considering underlying FSM clock tree) can be written as

Pclock_switching_during_statei
= 1.87CωV2

DD

f (Lextra_branches + Lstate_i_subtree) (11)

where Lextra_branches is the length of all new branches in FSM
clock tree which bring clock signal to clock gating cells and
Lstate_i_subtree is the length of active state clock sub-tree. There
are different Lstate_i_subtree in the circuit for each state, so
depending on the current state of FSMD, the datapath have dif-
ferent switching power for the clock tree in each clock cycle.
Based on this fact, depending on the time slice (ti) in which
each state is active, the switching power dissipation of the
clock tree can be written as

Pswitching = 1.87CωV2
DD f (Lextra_branches + Laverage) (12)

where

Laverage =
n∑

i=1

( ti
t

)
Lstate_i_subtree (13)

where t is the total time of FSMD active operation. Laverage is
weighted average of active state clock sub-tree length, while
ti is the weight of each one.
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By comparing (10) and (12), after applying clock gating,
switching power dissipation (without considering underlying
FSM clock tree) is decreased and clock tree power is saved
by this factor

Saving_Factor = 1 − Lextra_branches + Laverage

Ldatapath
. (14)

Area and portion of the sequential logic are good parame-
ters for estimating the length of clock tree in digital circuits.
According to Table IV, an FSM with clock gating cells is very
smaller than the datapath’s circuit. The number of FFs in all
datapaths is shown in Table I. These FFs are more than 96%
of FSMD FFs in average. Therefore, the length of the clock
tree distributed on the FSM including clock gating cells is
very shorter than the length of datapath clock tree (Ldatapath).
Furthermore, according to the number of active state FFs and
their local distributions, the average length of active state clock
sub-tree (Lstate_i_subtree) is very shorter than the whole datapath
clock tree (L). Hence, the numerator of (14) is very smaller
than the denominator.

V. ARCHITECTURE OVERVIEW

A. One-Hot Assignment for FSM

There are several assignment schemes for FSM implementa-
tion. The first discussion of one-hot state machines was given
by Huffman [24]. In one-hot assignment, only a single bit is
one at a time for each state. Our experimental results show
that one-hot state assignments reduce the circuit size of the
next-state logic which may lead to lower delay. However, it
needs more registers which may increase dynamic power con-
sumption. Experimental results which are shown in Table III
show that FSMs with one-hot assignment are individually
2.5× to 4.5× more power-hungry than FSMs with regular
binary assignments. However, considering the whole FSMD,
the one-hot state assignment dynamic power overhead is at
most 4.5%.

Although one-hot state machines dissipate an extra power,
they are typically faster and their speed is independent of the
number of states and only a single bit is one at any time [25].
Due to these attributes we used one-hot assignments for FSMs
and its outputs are used as the activation signals for clock
gating circuit.

B. Gated-Clock Design

Traditional clock gating techniques are based on identify-
ing idle parts of modules and shutting down these parts of the
clock tree by using AND gates at proper nodes of the clock
tree. In these techniques, the clock control logic is added to the
main circuit. Clock control logic consists of combinational ele-
ments and generates gating control signals indicating whether
a clock pulse should be supplied to registers or not. Clock
control logic and routing of the control signals to each gated
buffer usually have overhead on timing, area, and power.

Different clock control logics are designed based on
the clock gating methods. Typically for circuit-level meth-
ods, clock control logics are local and near target FFs.
Whereas, clock control logics are central and applied close

TABLE III
FSM STATE ASSIGNMENT DYNAMIC POWER COMPARISON

to the root of clock tree for higher level decision making in
microarchitecture-level methods. According to the number of
FFs in the datapath of each benchmark (Table I), applying
circuit-level techniques have more overhead compared with
the microarchitecture-level techniques.

To avoid the clock control logic overhead in conven-
tional circuit-level techniques and the FSMD structural fea-
tures proposed in Sections III and IV, we propose a novel
microarchitecture-level approach for dynamic power saving in
a large datapath to reduce unnecessary switching activities on
the clock tree. Our technique exploits separate clock sub-tree
for each state by coupling the clock gating cells to FFs of
each state in the one-hot FSM. Isolating clock sub-trees of
different states prevents wasteful switching on the clock tree
of datapath. Maximum delay constraint on a path from one FF
to the next, assuming no clock skew, is introduced in [23]. By
adding clock skew parameter to this formula, minimum clock
period for the circuit can be written as

min(Tc) = tpcq + tpd + tsu + tskew (15)

where tpcq is FFs propagation delay, tpd is the combinational
circuit delay restricted by HLS, tsu is FFs setup time, and tskew
is the maximum clock skew. Gated clock trees usually have
two basic timing issues. The first one is the increased skew for
gated clock. In our design, all registers in datapath are only fed
by gated clocks in contrast with conventional designs using
both normal and gated clocks. Furthermore, gated clocks in
our technique have only one extra AND gate in each clock
path compared with hierarchical AND gates in conventional
designs [26]. The inserted AND gates that are placed on the
root of each clock sub-tree have equal delays, so the skew do
not change and physical design tools easily handle these clock
paths.

The second problem of gated clock trees is timing con-
straints violation for clock control logic. Our clock gating
technique does not incorporate any auxiliary clock control
logic rather we use one-hot FSM outputs as activation signals
for clock gating circuits. Therefore, timing constraint violation
is not a concern in our approach.

Our FSM along with clock gating cells is shown in Fig. 3.
Each register in one-hot FSM design have a corresponding
latch in the clock gating cell. The latch block is transparent
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Fig. 3. Sample state circuit of FSMD with one-hot FSM assignment. (a) Conventional FSMD without clock-gating. (b) Our FSMD with clock gating.

Fig. 4. Timing diagram of FF triggering in Verilog behavioral modeling.
(a) Conventional approach: FF is triggered at clock rising edge and updates
its value when current state is i. (b) Our approach: FF is triggered by special
generated clock for state i.

when clock signal level is low and is fed with correspond-
ing state registers. The latch is needed for correct behavior,
because FSM has a transition on positive edge of clock and
may have glitches that must not be propagated to AND gate
when the clock is high. According to Fig. 4, in Verilog behav-
ioral modeling of regular circuits, the FFs are triggered at
rising edge of clock and current state signals (from FSM) act
as the enable signals. After clock gating, in our behavioral
modeling, the FFs are triggered by rising edge of the generated
clock signals at each state.

VI. EXPERIMENTAL FRAMEWORK

There are several HLS frameworks available on different
domains. Our clock gating circuit should be incorporated into
FSMD, so we need to perform some modifications in the
RTL generation parts of state of the art HLS tools. There are
some open source HLS tools suitable for this purpose. After
investigating new HLS tools and their properties, we choose
LegUp [27] which is a high-level synthesis tool developed
at the University of Toronto. LegUp is developed to provide
the performance and energy benefits of hardware and gets a
standard C program and generates field-programmable gate
array (FPGA)-based software/hardware system-on-chip.

In LegUp, MIPS processor and Altera Avalon interface are
used as soft processor and processor/accelerator communica-
tion media, respectively. LegUp exploits open-source low level

virtual machine (LLVM) [28] for compiler optimizations and
high-level language parsing as well. LegUp developers cre-
ate new backend compiler passes within LLVM for hardware
synthesis. We apply modified LegUp hybrid flow to generate
a system by choosing some program segments to be synthe-
sized into RTL as hardware accelerators while the remaining
program segments execute on an MIPS processor. In LegUp
hybrid flow (hardware/software partitioning), MIPS processor
begins execution of C programs until reaches the function
which is implemented as hardware accelerator. Then, the pro-
cessor sends arguments to the accelerator and asserts its start
signal. The processor goes to stall state until a finish signal
is asserted by the accelerator and then the processor resumes
execution.

A. Benchmarks and Hardware Accelerators Selection

To evaluate our technique practically, we need to have
some benchmark programs from various application domains.
We choose six benchmarks from CHStone [21] consisting
of a great set of computationally intensive programs in var-
ious categories that are compatible with LegUp. CHStone
benchmarks’ test vectors are self-contained and do not need
any external library for compiling. The benchmarks are from
arithmetic category (dfmul and dfadd), encryption domain
(blowfish), and communication and multimedia fields such as
Global System for Mobile Communications (GSM), Adaptive
Differential Pulse Code Modulation (ADPCM), and motion.
The LegUp framework includes a real-time hardware profiling
capability. Using hardware profiling results at function-level
and considering execution cycles, cache miss stalls, and energy
consumption of each function, the best candidates for hardware
accelerators have been chosen in the six CHStone benchmarks
and are shown in Table II.

B. Modification

This section describes how the proposed clock gating tech-
nique is applied to the modified LegUp high-level synthesis
framework (see Fig. 5). LegUp is an FPGA-based HLS tool
and uses relevant library characterization for FPGA family to
assign corresponding hardware operations to each instruction.
In this paper, we want to achieve low power ASIC design flow
for generating hardware accelerator through LegUp HLS tools.
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TABLE IV
DYNAMIC POWER COMPARISON BEFORE AND AFTER CLOCK GATING FOR CHSTONE BENCHMARKS

Fig. 5. Modified LegUp routines for clock gated ASIC design.

Therefore, an ASIC design library characterization similar to
FPGA-based flow is required. We create proper library char-
acterization by a commercial digital synthesis tool and CMOS
90 nm standard cell library.

In hybrid flow, LegUp gets the list of C functions of the
program which should be implemented as hardware accel-
erators. Then generates Verilog modules for main functions
and its sub-functions and finally attaches interfaces to them
for bus communication. These Verilog modules include both
FSM and datapath Verilog codes. To apply an RTL clock
gating method to FSMD, we should modify LegUp to decom-
pose FSMD Verilog module into separated FSM and datapath
modules.

To exploit one-hot features for applying clock gating, the
third modification in HLS is transforming FSM assignment
from regular binary into one-hot. The final LegUp modification
is adding clock gating cells to FSMD design. As shown in
Fig. 3, for each FSM state, we need to add an extra latch
with AND gate to one-hot FSM for behavioral simulation.
For the gate-level simulation and power estimation, these gates
are replaced with proper clock gating cells from the standard
cell library. These extra logic gates have a little overhead on
the one-hot FSM design. All of these LegUp modification are
shown with gray boxes in Fig. 5.

VII. EXPERIMENTAL RESULTS

A. Experimental Flow

We use six CHStone benchmarks in our experiments. For
each benchmark, the best function for implementing hardware
accelerators has been chosen. At first for clock gating justi-
fication, we determine the amount of wasted energy in input
capacitance of the unchanged FFs through an exact and non-
probability data-to-clock toggling ratio and simple FF energy
model (Section III). For this determination, we instrument
the RTL code by adding some instructions and perform a
behavioral simulation.

To evaluate our clock gating technique and measure power
saving, both regular and clock gated hardware accelerators
were synthesized with a commercial digital logic synthesis
tool using 90 nm CMOS standard cell library. The gate-
level simulation generates the switching activity data for each
benchmark. These switching activity data are analyzed by a
commercial power analysis tool and power estimation for both
regular and clock gated design are obtained.

B. Experimental Results

The execution information for the datapath of each bench-
mark and their register toggle trace results are shown in
Tables I and II. By analyzing this information with the met-
rics defined by (5) and (6) from Section III and according to
our discussion in Section IV, we assure that microarchitecture-
level clock gating is useful for power reduction in datapath
circuits. By applying the proposed clock gating method, clock
signal of idle states’ FFs are gated, therefore, only current
state’s clock sub-tree is toggled. Based on the relative per-
centage of the idle states’ FFs in the experimental circuits
[M2 in (6)], significant dynamic power reduction would be
achieved.

Table V compares dynamic power consumption before and
after clock gating and reports the power gains measured after
clock gating for the six representative benchmarks. Dynamic
power results are reported for the FSM and datapath separately.
Our clock gating technique only gates the datapath’s clock
signal by adding the clock gating cells to the FSM. Dynamic
power comparison between the FSM and FSM with clock gat-
ing cells shows that we have only a little power overhead on
the FSMD design. Table IV shows that our clock gating tech-
nique which uses one-hot assignment attribute needs negligible
area for its implementation.
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TABLE V
AREA OVERHEAD FOR CLOCK GATED CIRCUIT

Fig. 6. Relation of dynamic power reduction and percentage of current
state’s FFs.

Fig. 6 shows the percentage of total active state’s FFs in all
execution clock cycles in relation to dynamic power reduction
via the clock gating technique. In the hardware accelerator cir-
cuits of blowfish_main and encode, only 0.18% and 0.66% of
FFs are active and clock gating reduces dynamic power more
than 78% and 86%, respectively. While in Initialize_Buffer’s
circuit and float64_add circuit, 4.14% and 1.43% of FFs are
active and the dynamic power reduction is almost 50%.

VIII. CONCLUSION

The clock distribution network currently represents a major
dynamic power consumption bottleneck in ASIC design. In
this paper, we have introduced a new fine-grained microar-
chitecture clock gating technique for hardware accelerators
that reduces the clock tree power consumption and decrease
energy wasting in low activity FFs. This technique is based
on combining the clock gating cells (generate gated clocks for
datapath) with a one-hot FSM. The clock gating methodology
has been integrated into an HLS design flow and performs RTL
clock gating automatically. We use LegUp HLS tool as the
development platform and validation has been carried out on
a set of practical C-based HLS benchmark programs. Our RTL
clock gating technique in comparison to previous techniques

does not need any extra computations for making clock gat-
ing conditions. Furthermore, area overheads of the clock gated
circuits are less than 0.5%. The quality of our clock gating
method does not depend on the FSMD size and FSM com-
plexity, however, we obtain better power reduction for larger
FSMDs. Based on the circuit size and active state’s FFs, we
have obtained up to 86% of dynamic power saving.
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