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Abstract—Stochastic Computing (SC) is an alternative com-
puting paradigm that promises high robustness to noise and
outstanding area- and power-eff ciency compared to traditional
binary. It also enables the design of fully parallel and scal-
able computations. Despite its advantage, SC suffers from
long latency and high energy consumption compared to con-
ventional binary computing, especially with current CMOS
technology. The cost of conversion between binary and stochas-
tic representation takes a signif cant cost with CMOS circuits.
In-Memory Computation (IMC) is introduced to accelerate Big
Data applications by removing the data movement between
memory and processing units, and by providing massive par-
allelism. In this work, we explore the efforts in employing IMC
for fast and energy-eff cient SC system design. We specially focus
on memristors as an emerging technology that promises eff -
cient memory and computation beyond CMOS. We discuss the
potentials and challenges for realizing eff cient SC systems in
memory.

Index Terms—Stochastic computing, in-memory computing,
resistive RAM, emerging computing methods, fault tolerant
systems.

I. INTRODUCTION

STOCHASTIC Computing (SC) [1], [2] is re-emerging as a
promising alternative to the traditional binary computing.

SC offers extremely simple execution of complex arithmetic
operations (e.g., multiplication using bit-wise AND) and high
tolerance to noise and variation in data and computation logic.
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The paradigm has been used for low-cost and noise-tolerant
implementation of a wide range of applications from image [3]
and signal processing to coding [4], sorting [5], and artif cial
neural networks [6], to name a few. Recent work has shown
that SC is not limited to approximate computations [2]. SC
bit-streams and logic circuits can be structured to process data
deterministically and produce completely accurate results. This
recent advancement in the f eld has been one of the key con-
tributors to their re-emergence as a promising unconventional
computing paradigm.

Despite its advantages, SC faces certain limitations, espe-
cially in currently dominant CMOS technology. Data conversion
between binary and stochastic representation is costly with
CMOS logic, consuming more than 80% of the total system
cost [7]. Energy consumption is another major challenge. Often
long bit-streams must be processed for acceptable accuracy.
Processing long bit-streams serially results in high latency, and
high latency translates to high energy consumption, often higher
than the energy consumption of binary counterparts. Parallel
processing reduces the latency but increases the area and power
consumption, which in the end results in high energy consump-
tion again. Reading and writing stochastic bit-streams from and
to memory further cost-prohibitive latency and energy, espe-
cially for today’s big data applications. So bit-streams are f rst
converted back to binary format before storing them to memory.
Even though compared to Stochastic Computing (SC), binary
data may be easier and more eff cient for the transfer between
the memory and the processing unit, with the exponential
growth of the data that needs to be processed, this data
movement has been proven to be a major bottleneck [8].
To tackle this challenge, Processing in Memory (PIM) or
In-Memory Computation (IMC) is introduced. IMC refers to
processing data near its source, i.e., where it is stored: memory.
This is in contrast to the traditional Von-Neumann architec-
ture, in which processor and memory are two separate entities,
located far apart, and the data needs to travel between the
two. Thus, IMC accelerates applications by removing this data
movement. It also provides massive parallelism. As mentioned
before, size of the data and its movement is one of the major
challenges that SC faces too and hence it can considerably ben-
ef t from IMC. IMC signif cantly increases the competitiveness
of SC, rendering it a serious contender among unconventional
computing paradigms.

This work explores the efforts in combining the complemen-
tary advantages of (memristive) IMC and SC in developing
fast and energy-eff cient computing systems. We discuss the
state-of-the-art approaches for converting data between binary
and bit-stream representations and executing SC operations in
memory. We then discuss the potentials and challenges for
realizing eff cient SC systems in memory.
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Fig. 1. Basic SC Operations: Multiplication, (approximate) addition, and
scaled addition use independent bit-streams, whereas minimum, maximum,
and absolute value subtraction use correlated bit-streams.

II. FUNDAMENTALS

A. Stochastic Computing

In SC, data are encoded with uniform1 bit-streams with the
value determined by the probability of observing a ‘1’. When
representing a real-valued number, x, with a unipolar and a
bipolar stochastic encoding, each bit has the probability of x
and (x+1)/2 of being ‘1’, respectively. Unlike the positional
binary representation, in a stochastic bit-stream all bits have
the same weight. This provides tolerance to noise since a single
bit f ip results in only a least signif cant bit error. In a com-
mon form, which we call stochastic or random bit-stream, the
‘1’s are distributed randomly in the bit-stream: e.g., 10100011.
In a so-called unary bit-stream, f rst all ‘1’s appear followed
by all ‘0’s or vice versa, e.g., 11110000. Both of these bit-
streams represent the real value of 0.5. Two bit-streams are
correlated if they have a high overlap between the positions
of 1s. They are uncorrelated or independent if the ‘1’s are
distributed independently. Some SC operations such as multi-
plication require independent inputs. Some operations such as
minimum (min) and maximum (max) value functions can be
realized using a single logic gate with correlated inputs [5].
Min and max SC designs insensitive to correlation are also
proposed [3] but they are more costly and not as accurate.
Fig. 1 shows some of the basic SC operations. Conventionally,
a random bit-stream is generated by comparing a random value
r from a random number generator to the target value x. A ‘1’
is generated if r ≤ x. The cost of generating bit-streams with
this approach is relatively high, consuming more than 80% of
the total hardware cost of a typical SC system [7].

B. Memristive In-Memory Computing

Memristive technology is one of the promising technolo-
gies for IMC. Memristors support both storage [9]–[13] and
logic [14]–[17]. Single-level and multi-level memristor cells
are available. A single-level memristor cell has two resistance
levels (low resistance state (LRS) representing logical ‘1’ and
high resistance state (HRS) representing logical ‘0’) and can
represent one bit of data per cell. A multi-level memristor cell
has one or more middle resistance states between the LRS
and HRS. These states can represent different logical values.
By applying a stimulus (voltage or current) to memristors, it is
possible to induce logical operation among memristors. One of
the most eff cient types of such an operation is stateful logic.

1“Uniform” here refers to the property of having bits with the same weight,
which is a signif cant attribute of the stochastic representation [2].

In this type, the resistance of the input memristor prior to
the operation represents the logical input value and the resis-
tance of the output memristor after the operation represents the
logical output [14]. Among different memristive-based IMC
techniques, stateful logics such as IMPLY [15], MAGIC [16],
FELIX [17], and SIXOR [18] are of the most eff cient solu-
tions. For these, no access to the world outside the array (e.g.,
read or write) is necessary. Such operations can be natively
executed within memory array with a high degree of paral-
lelism. So parallel architectures such as SC designs can benef t
greatly from such IMC logic.

III. STOCHASTIC COMPUTING IN MEMORY

Despite f nding a large body of work in the literature in
employing SC for low-cost and noise-tolerant implementation
of different applications, only few works are dedicated to the
in-memory implementation of SC designs. Knag et al. [19]
developed a hybrid system consisting of memristors inte-
grated with CMOS-based stochastic circuits. The bit-streams
are generated in memory, but the computations are per-
formed off-memory using CMOS stochastic circuits. Finally,
the output bit-streams are written back to the memristive
memory. Expanding the effort in [19], the authors in [20]
exploited the well-known switching stochasticity of proba-
bilistic Conductive Bridging RAM (CBRAM) devices to eff -
ciently generate stochastic bit-streams in memory. They use
the generated bit-streams to perform deep learning param-
eter optimization using a hybrid CMOS-memristor stochas-
tic processor. A f ow-based in-memory SC architecture is
proposed in [21]. The design exploits the f ow of current
through probabilistically-switching memristive nano switches
in high-density crossbars to perform SC. They represent
data using bit-vector stochastic streams of varying bit-widths
instead of traditional stochastic streams composed of individ-
ual bits. A physics-based probabilistic switching model for
Resistive Random Access Memory (ReRAM) stochastic bit-
stream generation is developed in [22]. Gupta et al. [23]
developed SCRIMP, an architecture for SC acceleration with
ReRAM in-memory processing. Riahi Alam et al. [24], [25]
developed an exact (completely accurate) method for SC mul-
tiplication in memristive memory. To this end, they propose a
method for deterministic and accurate binary to bit-stream con-
version in memory. In-memory architectures for sorting unary
bit-streams and median f ltering of unary data are proposed
in [26]. Sun et al. [27] employ unary coding, implemented
with multi-level memristor cells, for weight representation in a
ReRAM-based neural network (NN) design. They apply unary
coding to tolerate the device resistance variations and design
accurate ReRAM-based NN accelerators.
A summary of these works and their key features can

be seen in Table I. This provides an overview of the lit-
erature, whereas, in the following subsections, we dive into
more details of the literature and existing approaches to SC in
memory. In particular, we look into how SC bit-streams are
generated, converted to binary, and processed in memory.

A. Bit-Stream Generation in Memory

In prior work, the intrinsic non-deterministic properties
of memristors have been exploited to generate random bit-
streams in memory. In [19], input data in an analog format are
directly converted to random bit-streams by a stochastic group
writing into the memristive memory. Stochastic bit-streams
are generated by applying programming pulses with variable
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TABLE I
AN OVERVIEW OF STOCHASTIC COMPUTING IN MEMORY LITERATURE

Fig. 2. Different Bit-Stream Generation Approaches for IMC: a) Off-Memory Generation, b) Group Write Proposed in [19], c) SCRIMP Row-Parallel
Generation [23] d) Deterministic Method of [24].

pulse widths to memristor cells. In every write to the mem-
ristive memory, a new bit-stream statistically independent of
previous bit-streams is generated. This approach is called a
native approach for SC, as it eliminates the extra conversion
steps between binary and bit-streams, accepts analog inputs
directly, and takes advantage of the properties of memristors to
provide randomness in the bit-streams. In comparison, the con-
ventional SC requires analog-to-digital conversion to accept
analog inputs, and the randomness must be created algorithmi-
cally using purely CMOS circuits [19]. SCRIMP [23] exploits
the stochastic nature of ReRAM devices to propose a new
stochastic bit-stream generation scheme. SCRIMP generates
bit-streams in parallel over multiple rows. These in-memory
methods eliminate the large overhead of off-memory CMOS-
based bit-stream generation [7]. They, however, suffer from
random f uctuations error. The bit-stream generation and hence
the computations are all approximate and probabilistic.
Riahi Alam et al. [25] proposed an in-memory method to

convert binary data into deterministic bit-streams. Assuming
that the data are already in memristive memory in binary
format, they connect the binary memristors in a column to
bit-stream memristors in a different column. For an accurate
conversion, an n-bit binary data stored in n memristors are
connected to 2n memristors. For operations such as SC multi-
plication that independent bit-streams are needed, the control
circuitry implements a different distribution for each bit-
stream [24]. Their approach is able to generate fast-converging
low-discrepancy (LD) bit-streams [2], [28]. LD bit-streams
quickly and monotonically converge to the target value, pro-
ducing acceptable results with much shorter bit-streams. The
bit-streams generated with this method are free of random
f uctuations error and can accurately represent input data.
Fig. 2 compares different bit-stream generation approaches for
IMC.
Sun et al. [27] propose a unary coding method with multi-

level cell devices to decrease the deviation of the stored value
in the presence of resistance variations. By utilizing multi-level
memristor cells, they can store multiple bits on each memris-
tor and effectively reduce the number of needed memristors
compared to the case of using single-level cells.

B. Bit-Stream to Binary Conversion

The output bit-streams from stochastic computations can be
preserved in memory in the bit-stream format for a future bit-
stream-based processing. However, if output in binary format
is desired, a bit-stream-to-binary step is performed. This can
be done by counting the number of 1s in the bit-stream by
adding all the bits of the bit-stream. Reading the bit-streams
from memory for summation using an off-memory CMOS
circuit can be expensive, especially for long bit-streams. To
avoid reading long bit-streams and off-memory conversion,
Riahi Alam et al. in [25] propose an algorithm for counting
all the ‘1’s of the bit-stream in memory. The algorithm con-
sists of AND and XOR operations. The method of [25] takes
4×(log2 L)

2 cycles to count the number of ‘1’s in a bit-stream
of length L.

C. Arithmetic Operations

Multiplication: Multiplication in SC involves bit-wise AND
on unipolar and bit-wise XNOR on bipolar bit-streams.
SCRIMP [23] executes SC multiplication by implementing an
implication-based AND and XNOR logic in crossbar memory.
Both AND and XNOR operations in their method take two
cycles (using other fundamental in-memory logic operations).
Riahi Alam et al. [25] propose a crossbar-compatible SC-

based design to perform accurate multiplication in memory.
For accurate multiplication, the distribution of ‘1’s and ‘0’s
for each operand must be independent of the other operand.
They provide this independence by connecting the binary
input memristors to their corresponding bit-stream memris-
tors in an uncorrelated fashion based on the clock division
method [2]. For a full-precision multiplication, bit-streams
of 22N bits and for a limited precision multiplication bit-
streams of 2N bits are generated. To execute AND operation,
MAGIC NOR is performed on inverted inputs. In an optimized
implementation [24], the binary data are converted to inde-
pendent LD bit-streams using the LD distribution proposed
in [29]. The multiplication method of [24] reduces the num-
ber of AND operations by only executing the operations that
can produce a non-zero output (that contributes to the f nal
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result). For 2-input full-precision multiplication, this reduces
the size of bit-streams to (2n−1)2 bits. Compared to the off-
memory CMOS-based SC approach, they report 50× and 37×
reductions in energy consumption for the 8-bit limited- and
full-precision in-memory SC multiplication [24]. The multi-
plication method of [24] and [25] can be extended to i-input
multiplication by performing i-input MAGIC NOR on i bit-
stream operands. The total latency of i-input multiplication is
2× (i+ 1) cycles. The result is completely accurate, free of
random f uctuations and correlation errors.
Addition: An OR-based, a MUX-based, and a count-based

stochastic additions are implemented in SCRIMP [23]. They
generate OR of n bits in a single cycle. The operation is exe-
cuted in parallel for the entire bit-stream and takes only one
cycle. For MUX-based addition, they f rst stochastically select
one of MUX inputs for each bit position. Then, the selected
input bit is read using a memory sense amplif er and stored in
an output register. The MUX-based addition takes one cycle
to generate one output bit, taking L cycles for L-bit output bit-
stream. They also propose a parallel count (PC)-based addition
in memory. Every cycle, one input bit-stream is read out by
the sense amplif er and sent to counters. This is done for i
inputs sequentially, consuming i cycles. In the end, counters
store the number of ones.
Subtraction: In the case of subtraction, the subtrahend can

be f rst inverted using an in-memory NOT operation. Then, any
addition technique can be used. Alternatively, subtraction can
be realized by bit-wise XOR if the input bit-streams are highly
correlated. In-memory XOR can be performed by three NOR
and two NOT operations, as elaborated in [25]. It can also be
implemented using FELIX [17] by executing single cycle OR
and NAND in crossbar memory. To be faster, SIXOR [18] can
be used, which implements XOR in a single cycle.
Minimum and Maximum: Bit-wise logical AND on two cor-

related bit-streams gives the min of the two bit-streams, and
bit-wise logical OR, the max. Authors in [26] propose MAGIC-
based in-memory designs for min and max operations on unary
bit-streams. The approach, however, is applicable to any cor-
related bit-streams. The AND operation (min) is realized by
f rst inverting the bit-streams through NOT and then perform-
ing bit-wise NOR on the inverted bit-streams in a total of three
cycles. The OR operation (max) is achieved in two cycles by
f rst bit-wise NOR on the input bit-streams and then NOT on
the outputs of the NOR operations.
Other Arithmetic Operations: Trigonometric, logarithmic,

and exponential functions are supported in SCRIMP using the
Maclaurin Series expansion [30]. This expansion approximates
the functions using a series of multiplications and additions.

IV. POTENTIALS

Low-Cost Bit-Stream Generation: Taking advantage of
the inherent properties of memristive memories to generate
stochastic bit-streams in memory addresses a long-time key
bottleneck in the cost-eff cient design of SC systems. By
accepting analog inputs, the extra conversion step between
analog and digital binary can also be avoided [19].
Robust to Soft-Error:Memristive technology is an emerging

technology still in evolution, facing practical challenges [31].
The fabrication process of memristors is not fully mature
yet; ReRAMs suffer from endurance challenges, stochastic
behavior, and resistance variations. Due to the changes to
the physical characteristics of a memristor cell, faults such
as resistance drift and retention failure are also observed in
ReRAM [13], [32]. These faults increase the soft error rate
in ReRAMs [32], [33]. The traditional reliability techniques

for soft errors are placed in the memory access interface.
Overcoming the soft errors is essential in IMC as they propa-
gate within operations without the data ever being read to be
recovered by the traditional techniques. The traditional binary
encoding is inherently more vulnerable to soft-errors com-
pared to uniform stochastic representation. SC representation
and operations are inherently tolerant of soft-errors as any bit
f ip leads to only a least signif cant bit error. Improving the
reliability of memristive IMC is an open challenge, and SC is
proving itself as a promising solution for this issue [27].
Massive Parallelism: Memristive crossbar arrays provide

massive bit-level parallelism. This is in particular suitable for
SC systems with many bit-level operations. By applying the
same voltage along bitlines/wordlines, we may induce a logical
operation in all rows/columns of the crossbar at the same
time. Further, crossbar arrays can be dynamically divided into
multiple partitions to support simultaneous but different in-row
(in-column) operations in the same row (column) [17], [26].
This allows performing various arithmetic operations on data
with a very short latency (in only a few cycles), which otherwise
need considerably more cycles to execute [24], [26].

V. CHALLENGES

Correlation Manipulation: Prior works such as [19] and [23]
take advantage of the inherent stochastic properties of mem-
ristive devices to generate random independent bit-streams.
But not all SC designs operate on independent bit-streams.
Single logic-gate design of SC operations such as min, max,
and subtraction needs correlated bit-streams. Because none of
the current in-memory bit-stream generation techniques can
generate correlated bit-streams, the bit-streams must f rst be
generated off-memory with CMOS-based techniques of gen-
erating correlated bit-streams and then be written. But this
approach leads to signif cant latency and energy consump-
tion, particularly when large bit-streams are to be written into
memory. A more signif cant challenge is when the data are
in memory in bit-stream format but are not correlated. They
must f rst be converted to binary format in memory, read from
memory, converted from binary to correlated bit-streams, and
f nally written back into memory. A different approach is to read
the bit-streams from memory and make them correlated using
CMOS-based correlation manipulation techniques [34], [35].
But this approach, in addition to the overheads of writing
bit-streams into memory consumes a high latency and energy
overhead for reading the bit-streams from memory.
A similar challenge exists when the bit-streams stored in

memory are correlated (or their correlation status is unknown),
but independent bit-streams are needed for the SC operation.
Either in-memory correlation manipulation techniques must
be developed to directly make the bit-streams independent in
memory, or similar to what we discussed above, the bit-streams
must be sent out of memory to manage their correlation with
CMOS-based correlation manipulation techniques.
Accuracy and Limitation of Memory Arrays: Representing

numbers with high precision and performing computation with
high accuracy need long stochastic bit-streams. The length
increases exponentially with precision. To execute accurate
n-bit precision min and max operations bit-steams of 2n

bits [26] and to perform exact multiplication on two n-bit
data, bit-streams of (2n−1)2 bits [24] are needed. Limitation
in terms of the number of memristors restricts the length of
bit-streams and so the scalability of the in-memory SC designs.
In a fully parallel design approach, the size of the memory

array def nes an upper limit for the maximum length of bit-
streams. In such a design, bit-streams with lengths longer than
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the number of rows (columns) can be supported by splitting
each bit-stream into multiple shorter sub-bit-streams, storing
each sub-bit-stream in a different column (row), and executing
the operations in parallel on the sub-bit-streams. This approach
processes the data with reduced latency as the primary objec-
tive. A different approach is to perform operations on the
sub-bit-streams in a serial manner by re-using the memristors.
This approach reduces the area (number of used memristors)
at the cost of additional latency. In this case, after process-
ing each pair of sub-bit-streams, the result is saved, and a
new pair of sub-bit-streams is processed. Assuming that each
bit-stream is split into M sub-bit-streams, the number of pro-
cessing cycles to process each pair of input data increases
by a factor of M. Some additional cycles are also needed for
data movement related to splitting the bit-stream. Combining
the parallel and the serial approach is also possible for fur-
ther trade-offs between area and delay. These approaches
increase the range of supported data widths but incur a more
complicated implementation and partition management [26].
Another solution to the long length issue is to use multi-

level memristor cells [27], [36]. These cells have more than
two resistance levels and can represent multi-bit data values
per cell. In general, a memristor with 2k resistance levels can
represent data of k bits per cell. Using this type of memristors
can reduce the bit-stream length by a factor of 1/(2k−1) [36].
Sequential Circuits: Sequential SC circuits including f nite-

state-machine-based approaches [37] also exist and are used to
implement complex arithmetic functions. Among these we can
name SC division, one of the four basic arithmetic operations,
that is implemented in prior works with sequential CMOS-
based circuits [35], [38]. These circuits are sequential in nature
and it is not clear how to convert them to parallel operations
for eff cient execution within memory.
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